Metamath Proof Explorer


Theorem indifdirOLD

Description: Obsolete version of indifdir as of 14-Aug-2024. (Contributed by Scott Fenton, 14-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion indifdirOLD ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 pm3.24 ¬ ( 𝑥𝐶 ∧ ¬ 𝑥𝐶 )
2 1 intnan ¬ ( 𝑥𝐴 ∧ ( 𝑥𝐶 ∧ ¬ 𝑥𝐶 ) )
3 anass ( ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐶 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐶 ∧ ¬ 𝑥𝐶 ) ) )
4 2 3 mtbir ¬ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐶 )
5 4 biorfi ( ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐵 ) ↔ ( ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐵 ) ∨ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐶 ) ) )
6 an32 ( ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ∧ 𝑥𝐶 ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐵 ) )
7 andi ( ( ( 𝑥𝐴𝑥𝐶 ) ∧ ( ¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶 ) ) ↔ ( ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐵 ) ∨ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ 𝑥𝐶 ) ) )
8 5 6 7 3bitr4i ( ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ∧ 𝑥𝐶 ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ( ¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶 ) ) )
9 ianor ( ¬ ( 𝑥𝐵𝑥𝐶 ) ↔ ( ¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶 ) )
10 9 anbi2i ( ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ( ¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶 ) ) )
11 8 10 bitr4i ( ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ∧ 𝑥𝐶 ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ ( 𝑥𝐵𝑥𝐶 ) ) )
12 elin ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐶 ) )
13 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
14 13 anbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐶 ) ↔ ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ∧ 𝑥𝐶 ) )
15 12 14 bitri ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) ↔ ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ∧ 𝑥𝐶 ) )
16 eldif ( 𝑥 ∈ ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ¬ 𝑥 ∈ ( 𝐵𝐶 ) ) )
17 elin ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴𝑥𝐶 ) )
18 elin ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
19 18 notbii ( ¬ 𝑥 ∈ ( 𝐵𝐶 ) ↔ ¬ ( 𝑥𝐵𝑥𝐶 ) )
20 17 19 anbi12i ( ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ¬ 𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ ( 𝑥𝐵𝑥𝐶 ) ) )
21 16 20 bitri ( 𝑥 ∈ ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ¬ ( 𝑥𝐵𝑥𝐶 ) ) )
22 11 15 21 3bitr4i ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) ) )
23 22 eqriv ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) )