Metamath Proof Explorer


Theorem iprodclim2

Description: A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1 𝑍 = ( ℤ𝑀 )
iprodclim.2 ( 𝜑𝑀 ∈ ℤ )
iprodclim.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
iprodclim.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
iprodclim.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
Assertion iprodclim2 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ∏ 𝑘𝑍 𝐴 )

Proof

Step Hyp Ref Expression
1 iprodclim.1 𝑍 = ( ℤ𝑀 )
2 iprodclim.2 ( 𝜑𝑀 ∈ ℤ )
3 iprodclim.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
4 iprodclim.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
5 iprodclim.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
6 4 5 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
7 1 3 6 ntrivcvg ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ )
8 climdm ( seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )
9 7 8 sylib ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )
10 1 2 3 4 5 iprod ( 𝜑 → ∏ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )
11 9 10 breqtrrd ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ∏ 𝑘𝑍 𝐴 )