Step |
Hyp |
Ref |
Expression |
1 |
|
iprodclim.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iprodclim.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iprodclim.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
4 |
|
iprodclim.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
iprodclim.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
6 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
7 |
1 3 6
|
ntrivcvg |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
8 |
|
climdm |
⊢ ( seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
10 |
1 2 3 4 5
|
iprod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
11 |
9 10
|
breqtrrd |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ∏ 𝑘 ∈ 𝑍 𝐴 ) |