Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem.a |
⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
2 |
|
isf32lem.b |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
3 |
|
isf32lem.c |
⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
4 |
|
isf32lem.d |
⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } |
5 |
1 2 3
|
isf32lem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
6 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
7 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ω |
8 |
|
nnunifi |
⊢ ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) |
9 |
7 8
|
mpan |
⊢ ( 𝑆 ∈ Fin → ∪ 𝑆 ∈ ω ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) |
11 |
|
elssuni |
⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ⊆ ∪ 𝑆 ) |
12 |
|
nnon |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) |
13 |
|
omsson |
⊢ ω ⊆ On |
14 |
13 10
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ On ) |
15 |
|
ontri1 |
⊢ ( ( 𝑏 ∈ On ∧ ∪ 𝑆 ∈ On ) → ( 𝑏 ⊆ ∪ 𝑆 ↔ ¬ ∪ 𝑆 ∈ 𝑏 ) ) |
16 |
12 14 15
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑏 ⊆ ∪ 𝑆 ↔ ¬ ∪ 𝑆 ∈ 𝑏 ) ) |
17 |
11 16
|
syl5ib |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑏 ∈ 𝑆 → ¬ ∪ 𝑆 ∈ 𝑏 ) ) |
18 |
17
|
con2d |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( ∪ 𝑆 ∈ 𝑏 → ¬ 𝑏 ∈ 𝑆 ) ) |
19 |
18
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ¬ 𝑏 ∈ 𝑆 ) |
20 |
4
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑆 ↔ 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ) |
21 |
19 20
|
sylnib |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ¬ 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ) |
22 |
|
suceq |
⊢ ( 𝑦 = 𝑏 → suc 𝑦 = suc 𝑏 ) |
23 |
22
|
fveq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ suc 𝑦 ) = ( 𝐹 ‘ suc 𝑏 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
25 |
23 24
|
psseq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
26 |
25
|
elrab3 |
⊢ ( 𝑏 ∈ ω → ( 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
27 |
26
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ( 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
28 |
21 27
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) |
29 |
28
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( ∪ 𝑆 ∈ 𝑏 → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
30 |
|
imnan |
⊢ ( ( ∪ 𝑆 ∈ 𝑏 → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
31 |
29 30
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ¬ ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
32 |
31
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ¬ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
33 |
|
eleq1 |
⊢ ( 𝑎 = ∪ 𝑆 → ( 𝑎 ∈ 𝑏 ↔ ∪ 𝑆 ∈ 𝑏 ) ) |
34 |
33
|
anbi1d |
⊢ ( 𝑎 = ∪ 𝑆 → ( ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
35 |
34
|
rexbidv |
⊢ ( 𝑎 = ∪ 𝑆 → ( ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
36 |
35
|
notbid |
⊢ ( 𝑎 = ∪ 𝑆 → ( ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
37 |
36
|
rspcev |
⊢ ( ( ∪ 𝑆 ∈ ω ∧ ¬ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) → ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
38 |
10 32 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
39 |
|
rexnal |
⊢ ( ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
40 |
38 39
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
41 |
40
|
ex |
⊢ ( 𝜑 → ( 𝑆 ∈ Fin → ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
42 |
6 41
|
mt2d |
⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |