Metamath Proof Explorer


Theorem isf32lem5

Description: Lemma for isfin3-2 . There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a ( 𝜑𝐹 : ω ⟶ 𝒫 𝐺 )
isf32lem.b ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹𝑥 ) )
isf32lem.c ( 𝜑 → ¬ ran 𝐹 ∈ ran 𝐹 )
isf32lem.d 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) }
Assertion isf32lem5 ( 𝜑 → ¬ 𝑆 ∈ Fin )

Proof

Step Hyp Ref Expression
1 isf32lem.a ( 𝜑𝐹 : ω ⟶ 𝒫 𝐺 )
2 isf32lem.b ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹𝑥 ) )
3 isf32lem.c ( 𝜑 → ¬ ran 𝐹 ∈ ran 𝐹 )
4 isf32lem.d 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) }
5 1 2 3 isf32lem2 ( ( 𝜑𝑎 ∈ ω ) → ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
6 5 ralrimiva ( 𝜑 → ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
7 4 ssrab3 𝑆 ⊆ ω
8 nnunifi ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → 𝑆 ∈ ω )
9 7 8 mpan ( 𝑆 ∈ Fin → 𝑆 ∈ ω )
10 9 adantl ( ( 𝜑𝑆 ∈ Fin ) → 𝑆 ∈ ω )
11 elssuni ( 𝑏𝑆𝑏 𝑆 )
12 nnon ( 𝑏 ∈ ω → 𝑏 ∈ On )
13 omsson ω ⊆ On
14 13 10 sselid ( ( 𝜑𝑆 ∈ Fin ) → 𝑆 ∈ On )
15 ontri1 ( ( 𝑏 ∈ On ∧ 𝑆 ∈ On ) → ( 𝑏 𝑆 ↔ ¬ 𝑆𝑏 ) )
16 12 14 15 syl2anr ( ( ( 𝜑𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑏 𝑆 ↔ ¬ 𝑆𝑏 ) )
17 11 16 syl5ib ( ( ( 𝜑𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑏𝑆 → ¬ 𝑆𝑏 ) )
18 17 con2d ( ( ( 𝜑𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑆𝑏 → ¬ 𝑏𝑆 ) )
19 18 impr ( ( ( 𝜑𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑆𝑏 ) ) → ¬ 𝑏𝑆 )
20 4 eleq2i ( 𝑏𝑆𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) } )
21 19 20 sylnib ( ( ( 𝜑𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑆𝑏 ) ) → ¬ 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) } )
22 suceq ( 𝑦 = 𝑏 → suc 𝑦 = suc 𝑏 )
23 22 fveq2d ( 𝑦 = 𝑏 → ( 𝐹 ‘ suc 𝑦 ) = ( 𝐹 ‘ suc 𝑏 ) )
24 fveq2 ( 𝑦 = 𝑏 → ( 𝐹𝑦 ) = ( 𝐹𝑏 ) )
25 23 24 psseq12d ( 𝑦 = 𝑏 → ( ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
26 25 elrab3 ( 𝑏 ∈ ω → ( 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) } ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
27 26 ad2antrl ( ( ( 𝜑𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑆𝑏 ) ) → ( 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) } ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
28 21 27 mtbid ( ( ( 𝜑𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑆𝑏 ) ) → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) )
29 28 expr ( ( ( 𝜑𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑆𝑏 → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
30 imnan ( ( 𝑆𝑏 → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ↔ ¬ ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
31 29 30 sylib ( ( ( 𝜑𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ¬ ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
32 31 nrexdv ( ( 𝜑𝑆 ∈ Fin ) → ¬ ∃ 𝑏 ∈ ω ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
33 eleq1 ( 𝑎 = 𝑆 → ( 𝑎𝑏 𝑆𝑏 ) )
34 33 anbi1d ( 𝑎 = 𝑆 → ( ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ↔ ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ) )
35 34 rexbidv ( 𝑎 = 𝑆 → ( ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ↔ ∃ 𝑏 ∈ ω ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ) )
36 35 notbid ( 𝑎 = 𝑆 → ( ¬ ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ↔ ¬ ∃ 𝑏 ∈ ω ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ) )
37 36 rspcev ( ( 𝑆 ∈ ω ∧ ¬ ∃ 𝑏 ∈ ω ( 𝑆𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ) → ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
38 10 32 37 syl2anc ( ( 𝜑𝑆 ∈ Fin ) → ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
39 rexnal ( ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ↔ ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
40 38 39 sylib ( ( 𝜑𝑆 ∈ Fin ) → ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) )
41 40 ex ( 𝜑 → ( 𝑆 ∈ Fin → ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹𝑏 ) ) ) )
42 6 41 mt2d ( 𝜑 → ¬ 𝑆 ∈ Fin )