| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pautset.s | ⊢ 𝑆  =  ( PSubSp ‘ 𝐾 ) | 
						
							| 2 |  | pautset.m | ⊢ 𝑀  =  ( PAut ‘ 𝐾 ) | 
						
							| 3 | 1 2 | pautsetN | ⊢ ( 𝐾  ∈  𝐵  →  𝑀  =  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝐾  ∈  𝐵  →  ( 𝐹  ∈  𝑀  ↔  𝐹  ∈  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) ) | 
						
							| 5 |  | f1of | ⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑆  →  𝐹 : 𝑆 ⟶ 𝑆 ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝑆  ∈  V | 
						
							| 7 |  | fex | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑆  ∧  𝑆  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑆  →  𝐹  ∈  V ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) )  →  𝐹  ∈  V ) | 
						
							| 10 |  | f1oeq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ↔  𝐹 : 𝑆 –1-1-onto→ 𝑆 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 13 | 11 12 | sseq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 14 | 13 | bibi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑥  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 15 | 14 | 2ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 10 15 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝐹 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 17 | 9 16 | elab3 | ⊢ ( 𝐹  ∈  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) }  ↔  ( 𝐹 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 4 17 | bitrdi | ⊢ ( 𝐾  ∈  𝐵  →  ( 𝐹  ∈  𝑀  ↔  ( 𝐹 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ⊆  ( 𝐹 ‘ 𝑦 ) ) ) ) ) |