| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pautset.s | ⊢ 𝑆  =  ( PSubSp ‘ 𝐾 ) | 
						
							| 2 |  | pautset.m | ⊢ 𝑀  =  ( PAut ‘ 𝐾 ) | 
						
							| 3 |  | elex | ⊢ ( 𝐾  ∈  𝐵  →  𝐾  ∈  V ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( PSubSp ‘ 𝑘 )  =  ( PSubSp ‘ 𝐾 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( PSubSp ‘ 𝑘 )  =  𝑆 ) | 
						
							| 6 | 5 | f1oeq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 )  ↔  𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ) ) | 
						
							| 7 |  | f1oeq3 | ⊢ ( ( PSubSp ‘ 𝑘 )  =  𝑆  →  ( 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 )  ↔  𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝑘  =  𝐾  →  ( 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 )  ↔  𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) | 
						
							| 9 | 6 8 | bitrd | ⊢ ( 𝑘  =  𝐾  →  ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 )  ↔  𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) | 
						
							| 10 | 5 | raleqdv | ⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑦  ∈  ( PSubSp ‘ 𝑘 ) ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 11 | 5 10 | raleqbidv | ⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑥  ∈  ( PSubSp ‘ 𝑘 ) ∀ 𝑦  ∈  ( PSubSp ‘ 𝑘 ) ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 12 | 9 11 | anbi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( PSubSp ‘ 𝑘 ) ∀ 𝑦  ∈  ( PSubSp ‘ 𝑘 ) ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 13 | 12 | abbidv | ⊢ ( 𝑘  =  𝐾  →  { 𝑓  ∣  ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( PSubSp ‘ 𝑘 ) ∀ 𝑦  ∈  ( PSubSp ‘ 𝑘 ) ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 14 |  | df-pautN | ⊢ PAut  =  ( 𝑘  ∈  V  ↦  { 𝑓  ∣  ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( PSubSp ‘ 𝑘 ) ∀ 𝑦  ∈  ( PSubSp ‘ 𝑘 ) ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 15 | 1 | fvexi | ⊢ 𝑆  ∈  V | 
						
							| 16 | 15 15 | mapval | ⊢ ( 𝑆  ↑m  𝑆 )  =  { 𝑓  ∣  𝑓 : 𝑆 ⟶ 𝑆 } | 
						
							| 17 |  | ovex | ⊢ ( 𝑆  ↑m  𝑆 )  ∈  V | 
						
							| 18 | 16 17 | eqeltrri | ⊢ { 𝑓  ∣  𝑓 : 𝑆 ⟶ 𝑆 }  ∈  V | 
						
							| 19 |  | f1of | ⊢ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  →  𝑓 : 𝑆 ⟶ 𝑆 ) | 
						
							| 20 | 19 | ss2abi | ⊢ { 𝑓  ∣  𝑓 : 𝑆 –1-1-onto→ 𝑆 }  ⊆  { 𝑓  ∣  𝑓 : 𝑆 ⟶ 𝑆 } | 
						
							| 21 | 18 20 | ssexi | ⊢ { 𝑓  ∣  𝑓 : 𝑆 –1-1-onto→ 𝑆 }  ∈  V | 
						
							| 22 |  | simpl | ⊢ ( ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) )  →  𝑓 : 𝑆 –1-1-onto→ 𝑆 ) | 
						
							| 23 | 22 | ss2abi | ⊢ { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) }  ⊆  { 𝑓  ∣  𝑓 : 𝑆 –1-1-onto→ 𝑆 } | 
						
							| 24 | 21 23 | ssexi | ⊢ { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) }  ∈  V | 
						
							| 25 | 13 14 24 | fvmpt | ⊢ ( 𝐾  ∈  V  →  ( PAut ‘ 𝐾 )  =  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 26 | 2 25 | eqtrid | ⊢ ( 𝐾  ∈  V  →  𝑀  =  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 27 | 3 26 | syl | ⊢ ( 𝐾  ∈  𝐵  →  𝑀  =  { 𝑓  ∣  ( 𝑓 : 𝑆 –1-1-onto→ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  ⊆  𝑦  ↔  ( 𝑓 ‘ 𝑥 )  ⊆  ( 𝑓 ‘ 𝑦 ) ) ) } ) |