Metamath Proof Explorer


Theorem pautsetN

Description: The set of projective automorphisms. (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pautset.s S=PSubSpK
pautset.m M=PAutK
Assertion pautsetN KBM=f|f:S1-1 ontoSxSySxyfxfy

Proof

Step Hyp Ref Expression
1 pautset.s S=PSubSpK
2 pautset.m M=PAutK
3 elex KBKV
4 fveq2 k=KPSubSpk=PSubSpK
5 4 1 eqtr4di k=KPSubSpk=S
6 5 f1oeq2d k=Kf:PSubSpk1-1 ontoPSubSpkf:S1-1 ontoPSubSpk
7 f1oeq3 PSubSpk=Sf:S1-1 ontoPSubSpkf:S1-1 ontoS
8 5 7 syl k=Kf:S1-1 ontoPSubSpkf:S1-1 ontoS
9 6 8 bitrd k=Kf:PSubSpk1-1 ontoPSubSpkf:S1-1 ontoS
10 5 raleqdv k=KyPSubSpkxyfxfyySxyfxfy
11 5 10 raleqbidv k=KxPSubSpkyPSubSpkxyfxfyxSySxyfxfy
12 9 11 anbi12d k=Kf:PSubSpk1-1 ontoPSubSpkxPSubSpkyPSubSpkxyfxfyf:S1-1 ontoSxSySxyfxfy
13 12 abbidv k=Kf|f:PSubSpk1-1 ontoPSubSpkxPSubSpkyPSubSpkxyfxfy=f|f:S1-1 ontoSxSySxyfxfy
14 df-pautN PAut=kVf|f:PSubSpk1-1 ontoPSubSpkxPSubSpkyPSubSpkxyfxfy
15 1 fvexi SV
16 15 15 mapval SS=f|f:SS
17 ovex SSV
18 16 17 eqeltrri f|f:SSV
19 f1of f:S1-1 ontoSf:SS
20 19 ss2abi f|f:S1-1 ontoSf|f:SS
21 18 20 ssexi f|f:S1-1 ontoSV
22 simpl f:S1-1 ontoSxSySxyfxfyf:S1-1 ontoS
23 22 ss2abi f|f:S1-1 ontoSxSySxyfxfyf|f:S1-1 ontoS
24 21 23 ssexi f|f:S1-1 ontoSxSySxyfxfyV
25 13 14 24 fvmpt KVPAutK=f|f:S1-1 ontoSxSySxyfxfy
26 2 25 eqtrid KVM=f|f:S1-1 ontoSxSySxyfxfy
27 3 26 syl KBM=f|f:S1-1 ontoSxSySxyfxfy