Step |
Hyp |
Ref |
Expression |
1 |
|
itg2lea.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
2 |
|
itg2lea.2 |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
3 |
|
itg2lea.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
itg2lea.4 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
5 |
|
itg2eqa.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
6 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
8 |
|
itg2cl |
⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
10 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
11 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑥 ∈ ℝ ) |
12 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
13 |
1 11 12
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
14 |
10 13
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
15 |
14
|
xrleidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
16 |
15 5
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
17 |
1 2 3 4 16
|
itg2lea |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |
18 |
5 15
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
19 |
2 1 3 4 18
|
itg2lea |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
20 |
7 9 17 19
|
xrletrid |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ 𝐺 ) ) |