| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mulc.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 2 |
|
itg2mulc.3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 3 |
|
itg2mulclem.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 4 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 5 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 ∈ dom ∫1 ) |
| 9 |
3
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 11 |
10
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 12 |
8 11
|
i1fmulc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∈ dom ∫1 ) |
| 13 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∈ dom ∫1 ∧ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 14 |
13
|
3expia |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∈ dom ∫1 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 15 |
7 12 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 16 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 18 |
17
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ∈ ℝ ) |
| 19 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 20 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 21 |
1 19 20
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 23 |
22
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 24 |
3
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 26 |
3
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐴 ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 0 < 𝐴 ) |
| 28 |
|
ledivmul |
⊢ ( ( ( 𝑓 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 29 |
18 23 25 27 28
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 30 |
18
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ∈ ℂ ) |
| 31 |
25
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 32 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ∈ ℝ+ ) |
| 33 |
32
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ≠ 0 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ≠ 0 ) |
| 35 |
30 31 34
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) = ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ) |
| 36 |
35
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑦 ) / 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 37 |
29 36
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 |
37
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 |
|
reex |
⊢ ℝ ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 41 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ V ) |
| 42 |
17
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 = ( 𝑦 ∈ ℝ ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 43 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℝ+ ) |
| 44 |
|
fconstmpt |
⊢ ( ℝ × { 𝐴 } ) = ( 𝑦 ∈ ℝ ↦ 𝐴 ) |
| 45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ℝ × { 𝐴 } ) = ( 𝑦 ∈ ℝ ↦ 𝐴 ) ) |
| 46 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 |
40 43 23 45 47
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 49 |
40 18 41 42 48
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
| 51 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 52 |
|
fconstmpt |
⊢ ( ℝ × { ( 1 / 𝐴 ) } ) = ( 𝑦 ∈ ℝ ↦ ( 1 / 𝐴 ) ) |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ℝ × { ( 1 / 𝐴 ) } ) = ( 𝑦 ∈ ℝ ↦ ( 1 / 𝐴 ) ) ) |
| 54 |
40 51 18 53 42
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) = ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 55 |
40 50 23 54 47
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 1 / 𝐴 ) · ( 𝑓 ‘ 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 |
38 49 55
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ∘r ≤ 𝐹 ) ) |
| 57 |
8 11
|
itg1mulc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) = ( ( 1 / 𝐴 ) · ( ∫1 ‘ 𝑓 ) ) ) |
| 58 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 60 |
59
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
| 61 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ∈ ℝ ) |
| 62 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐴 ∈ ℂ ) |
| 63 |
60 62 33
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) = ( ( 1 / 𝐴 ) · ( ∫1 ‘ 𝑓 ) ) ) |
| 64 |
57 63
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) = ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ) |
| 65 |
64
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 66 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 67 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 0 < 𝐴 ) |
| 68 |
|
ledivmul |
⊢ ( ( ( ∫1 ‘ 𝑓 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 69 |
59 66 61 67 68
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ( ∫1 ‘ 𝑓 ) / 𝐴 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 70 |
65 69
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ∫1 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · 𝑓 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 71 |
15 56 70
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 72 |
71
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) |
| 73 |
|
ge0mulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 75 |
|
fconstg |
⊢ ( 𝐴 ∈ ℝ+ → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
| 76 |
3 75
|
syl |
⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
| 77 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 78 |
|
rpge0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) |
| 79 |
|
elrege0 |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 80 |
77 78 79
|
sylanbrc |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 81 |
3 80
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 82 |
81
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( 0 [,) +∞ ) ) |
| 83 |
76 82
|
fssd |
⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 84 |
39
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 85 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 86 |
74 83 1 84 84 85
|
off |
⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 87 |
|
fss |
⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 88 |
86 4 87
|
sylancl |
⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 89 |
24 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ) |
| 90 |
89
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) |
| 91 |
|
itg2leub |
⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) ) |
| 92 |
88 90 91
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) → ( ∫1 ‘ 𝑓 ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) ) ) |
| 93 |
72 92
|
mpbird |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |