| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mulc.2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 2 |
|
itg2mulc.3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 3 |
|
itg2mulc.4 |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 6 |
|
elrege0 |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 7 |
3 6
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 9 |
8
|
anim1i |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 10 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 12 |
4 5 11
|
itg2mulclem |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 13 |
|
ge0mulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 15 |
|
fconst6g |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) → ( ℝ × { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 17 |
|
reex |
⊢ ℝ ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 19 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 20 |
14 16 1 18 18 19
|
off |
⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 22 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 23 |
|
fss |
⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 24 |
20 22 23
|
sylancl |
⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 26 |
8 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ) |
| 28 |
|
itg2lecl |
⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ ∧ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ ) |
| 29 |
25 27 12 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ ) |
| 30 |
11
|
rpreccld |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 31 |
21 29 30
|
itg2mulclem |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ≤ ( ( 1 / 𝐴 ) · ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) |
| 32 |
4
|
feqmptd |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 34 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 35 |
33 34
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 36 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 37 |
1 35 36
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 39 |
38
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 40 |
39
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 1 · ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 41 |
40
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝑦 ∈ ℝ ↦ ( 1 · ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 42 |
32 41
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 1 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 43 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ℝ ∈ V ) |
| 44 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ ) |
| 45 |
43 30 11
|
ofc12 |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) = ( ℝ × { ( ( 1 / 𝐴 ) · 𝐴 ) } ) ) |
| 46 |
|
fconstmpt |
⊢ ( ℝ × { ( ( 1 / 𝐴 ) · 𝐴 ) } ) = ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · 𝐴 ) ) |
| 47 |
45 46
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · 𝐴 ) ) ) |
| 48 |
8
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 50 |
11
|
rpne0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 51 |
49 50
|
recid2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
| 52 |
51
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝑦 ∈ ℝ ↦ ( ( 1 / 𝐴 ) · 𝐴 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 53 |
47 52
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 54 |
43 44 39 53 32
|
offval2 |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) ∘f · 𝐹 ) = ( 𝑦 ∈ ℝ ↦ ( 1 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 55 |
30
|
rpcnd |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 56 |
|
fconst6g |
⊢ ( ( 1 / 𝐴 ) ∈ ℂ → ( ℝ × { ( 1 / 𝐴 ) } ) : ℝ ⟶ ℂ ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ℝ × { ( 1 / 𝐴 ) } ) : ℝ ⟶ ℂ ) |
| 58 |
|
fconst6g |
⊢ ( 𝐴 ∈ ℂ → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℂ ) |
| 59 |
49 58
|
syl |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℂ ) |
| 60 |
|
mulass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐴 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 62 |
43 57 59 38 61
|
caofass |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ℝ × { 𝐴 } ) ) ∘f · 𝐹 ) = ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 63 |
42 54 62
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐹 = ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ ( ( ℝ × { ( 1 / 𝐴 ) } ) ∘f · ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) |
| 65 |
29
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℂ ) |
| 66 |
65 49 50
|
divrec2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) / 𝐴 ) = ( ( 1 / 𝐴 ) · ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) |
| 67 |
31 64 66
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) / 𝐴 ) ) |
| 68 |
5 29 11
|
lemuldiv2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) / 𝐴 ) ) ) |
| 69 |
67 68
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 70 |
|
itg2cl |
⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ* ) |
| 71 |
24 70
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ* ) |
| 72 |
26
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) |
| 73 |
|
xrletri3 |
⊢ ( ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ∈ ℝ* ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) ) |
| 74 |
71 72 73
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ↔ ( ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ≤ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ∧ ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ≤ ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) ) ) |
| 76 |
12 69 75
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 77 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ℝ ∈ V ) |
| 78 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 79 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 80 |
|
0re |
⊢ 0 ∈ ℝ |
| 81 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 0 ∈ ℝ ) |
| 82 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → 0 = 𝐴 ) |
| 83 |
82
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = ( 𝐴 · 𝑥 ) ) |
| 84 |
|
mul02 |
⊢ ( 𝑥 ∈ ℂ → ( 0 · 𝑥 ) = 0 ) |
| 85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = 0 ) |
| 86 |
83 85
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 0 = 𝐴 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) = 0 ) |
| 87 |
77 78 79 81 86
|
caofid2 |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) = ( ℝ × { 0 } ) ) |
| 88 |
87
|
fveq2d |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
| 89 |
|
itg20 |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
| 90 |
88 89
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = 0 ) |
| 91 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 92 |
91
|
recnd |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℂ ) |
| 93 |
92
|
mul02d |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 · ( ∫2 ‘ 𝐹 ) ) = 0 ) |
| 94 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 0 = 𝐴 ) |
| 95 |
94
|
oveq1d |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 · ( ∫2 ‘ 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 96 |
90 93 95
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |
| 97 |
7
|
simprd |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 98 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 99 |
80 8 98
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 100 |
97 99
|
mpbid |
⊢ ( 𝜑 → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 101 |
76 96 100
|
mpjaodan |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫2 ‘ 𝐹 ) ) ) |