| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2split.a |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 2 |
|
itg2split.b |
⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
| 3 |
|
itg2split.i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 4 |
|
itg2split.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 5 |
|
itg2split.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 6 |
|
itg2split.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 7 |
|
itg2split.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 8 |
|
itg2split.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 9 |
|
itg2split.sf |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 10 |
|
itg2split.sg |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 ∈ dom ∫1 ) |
| 12 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐴 ∈ dom vol ) |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) |
| 16 |
15
|
i1fres |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 17 |
11 14 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 18 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐵 ∈ dom vol ) |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) |
| 22 |
21
|
i1fres |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝐵 ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 23 |
11 20 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 24 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 26 |
19 25
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ∈ ℝ ) |
| 27 |
9 10
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 29 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 30 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 31 |
1 30
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 32 |
29 31
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 35 |
|
reex |
⊢ ℝ ∈ V |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 37 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
| 38 |
|
c0ex |
⊢ 0 ∈ V |
| 39 |
37 38
|
ifex |
⊢ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 41 |
37 38
|
ifex |
⊢ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 43 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) |
| 44 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) |
| 45 |
36 40 42 43 44
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) |
| 47 |
17 23
|
i1fadd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
| 48 |
46 47
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
| 49 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 50 |
11 49
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 : ℝ ⟶ ℝ ) |
| 51 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 52 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ∈ ℝ ) |
| 53 |
50 51 52
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ℝ ) |
| 54 |
53
|
leidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑓 ‘ 𝑦 ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑓 ‘ 𝑦 ) ) |
| 56 |
|
iftrue |
⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 58 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → ¬ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 60 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 61 |
59 60
|
sylnib |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 62 |
|
imnan |
⊢ ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 63 |
61 62
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝐵 ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑦 ∈ 𝐵 ) |
| 65 |
|
iffalse |
⊢ ( ¬ 𝑦 ∈ 𝐵 → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 67 |
57 66
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑓 ‘ 𝑦 ) + 0 ) ) |
| 68 |
53
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ℂ ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℂ ) |
| 70 |
69
|
addridd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑦 ) + 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 71 |
67 70
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = ( 𝑓 ‘ 𝑦 ) ) |
| 72 |
55 71
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 73 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑓 ‘ 𝑦 ) ) |
| 74 |
|
iftrue |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 76 |
73 75
|
breqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 77 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 78 |
77
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 79 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) |
| 80 |
78 79
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑈 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) ) |
| 81 |
80
|
notbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ¬ 𝑦 ∈ 𝑈 ↔ ¬ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) ) |
| 82 |
|
ioran |
⊢ ( ¬ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 83 |
81 82
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ¬ 𝑦 ∈ 𝑈 ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 84 |
83
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑦 ∈ 𝑈 ) |
| 85 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 ∘r ≤ 𝐻 ) |
| 86 |
50
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 Fn ℝ ) |
| 87 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 88 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝑈 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 90 |
87 89
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 91 |
90 8
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 92 |
91
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ℝ ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐻 Fn ℝ ) |
| 94 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ℝ ∈ V ) |
| 95 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 96 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 97 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 98 |
86 93 94 94 95 96 97
|
ofrfval |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑓 ∘r ≤ 𝐻 ↔ ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 99 |
85 98
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 100 |
99
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 101 |
51 100
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 103 |
51
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
| 104 |
|
eldif |
⊢ ( 𝑦 ∈ ( ℝ ∖ 𝑈 ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝑈 ) ) |
| 105 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 106 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 107 |
8 106
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐻 |
| 108 |
107 105
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) |
| 109 |
108
|
nfeq1 |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) = 0 |
| 110 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) = 0 ↔ ( 𝐻 ‘ 𝑦 ) = 0 ) ) |
| 111 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝑈 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝑈 ) ) |
| 112 |
8
|
fvmpt2i |
⊢ ( 𝑥 ∈ ℝ → ( 𝐻 ‘ 𝑥 ) = ( I ‘ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 113 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝑈 → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 0 ) |
| 114 |
113
|
fveq2d |
⊢ ( ¬ 𝑥 ∈ 𝑈 → ( I ‘ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) = ( I ‘ 0 ) ) |
| 115 |
|
0cn |
⊢ 0 ∈ ℂ |
| 116 |
|
fvi |
⊢ ( 0 ∈ ℂ → ( I ‘ 0 ) = 0 ) |
| 117 |
115 116
|
ax-mp |
⊢ ( I ‘ 0 ) = 0 |
| 118 |
114 117
|
eqtrdi |
⊢ ( ¬ 𝑥 ∈ 𝑈 → ( I ‘ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) = 0 ) |
| 119 |
112 118
|
sylan9eq |
⊢ ( ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 120 |
111 119
|
sylbi |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝑈 ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 121 |
105 109 110 120
|
vtoclgaf |
⊢ ( 𝑦 ∈ ( ℝ ∖ 𝑈 ) → ( 𝐻 ‘ 𝑦 ) = 0 ) |
| 122 |
104 121
|
sylbir |
⊢ ( ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑦 ) = 0 ) |
| 123 |
103 122
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑦 ) = 0 ) |
| 124 |
102 123
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑓 ‘ 𝑦 ) ≤ 0 ) |
| 125 |
84 124
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ≤ 0 ) |
| 126 |
125
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ 0 ) |
| 127 |
65
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 128 |
126 127
|
breqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 129 |
76 128
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 130 |
|
iffalse |
⊢ ( ¬ 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 131 |
130
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 132 |
131
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = ( 0 + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 133 |
|
0re |
⊢ 0 ∈ ℝ |
| 134 |
|
ifcl |
⊢ ( ( ( 𝑓 ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 135 |
53 133 134
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 136 |
135
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℂ ) |
| 137 |
136
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℂ ) |
| 138 |
137
|
addlidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 0 + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 139 |
132 138
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 140 |
129 139
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 141 |
72 140
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 142 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 143 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 144 |
142 143
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 145 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 146 |
145 143
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 147 |
144 146
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 148 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) |
| 149 |
|
ovex |
⊢ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ∈ V |
| 150 |
147 148 149
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑦 ) = ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 151 |
103 150
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑦 ) = ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 152 |
141 151
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑦 ) ) |
| 153 |
11 33 34 48 152
|
itg1lea |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 154 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 155 |
17 23
|
itg1add |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 156 |
154 155
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 157 |
153 156
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 158 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 159 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 160 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 161 |
160 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 162 |
161
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 163 |
162
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 164 |
163 87
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 165 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 166 |
164 165
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 167 |
166 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 168 |
167
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 169 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 170 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 ∈ dom ∫1 |
| 171 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑓 |
| 172 |
|
nfcv |
⊢ Ⅎ 𝑥 ∘r ≤ |
| 173 |
171 172 107
|
nfbr |
⊢ Ⅎ 𝑥 𝑓 ∘r ≤ 𝐻 |
| 174 |
170 173
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) |
| 175 |
169 174
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) |
| 176 |
14 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐴 ⊆ ℝ ) |
| 177 |
176
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 178 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 179 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ V ) |
| 180 |
90
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 181 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 182 |
181
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 183 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 184 |
178 179 180 182 183
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐻 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 185 |
184
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐻 → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 186 |
185
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 187 |
186
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 188 |
177 187
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 189 |
162
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 190 |
189
|
iftrued |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 𝐶 ) |
| 191 |
188 190
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ 𝐶 ) |
| 192 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 193 |
192
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 194 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 195 |
194
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 196 |
191 193 195
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 197 |
|
0le0 |
⊢ 0 ≤ 0 |
| 198 |
197
|
a1i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 199 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = 0 ) |
| 200 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 201 |
198 199 200
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 202 |
201
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 203 |
196 202
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 204 |
203
|
a1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 205 |
175 204
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 206 |
6
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 207 |
36 40 166 43 206
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 208 |
207
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 209 |
205 208
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) |
| 210 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 211 |
168 17 209 210
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 212 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 213 |
212 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 214 |
213
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 215 |
214
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 216 |
215 87
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 217 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 218 |
216 217
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 219 |
218 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 220 |
219
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 221 |
|
mblss |
⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) |
| 222 |
20 221
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐵 ⊆ ℝ ) |
| 223 |
222
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 224 |
223 187
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 225 |
214
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 226 |
225
|
iftrued |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 𝐶 ) |
| 227 |
224 226
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ≤ 𝐶 ) |
| 228 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 229 |
228
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 230 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 231 |
230
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 232 |
227 229 231
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 233 |
197
|
a1i |
⊢ ( ¬ 𝑥 ∈ 𝐵 → 0 ≤ 0 ) |
| 234 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = 0 ) |
| 235 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) |
| 236 |
233 234 235
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 237 |
236
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ ¬ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 238 |
232 237
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 239 |
238
|
a1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 240 |
175 239
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 241 |
7
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 242 |
36 42 218 44 241
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 243 |
242
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 244 |
240 243
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ) |
| 245 |
|
itg2ub |
⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 246 |
220 23 244 245
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 247 |
19 25 158 159 211 246
|
le2addd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 248 |
13 26 28 157 247
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 249 |
248
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 250 |
249
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 251 |
27
|
rexrd |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) |
| 252 |
|
itg2leub |
⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 253 |
91 251 252
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 254 |
250 253
|
mpbird |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |