| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2split.a |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 2 |
|
itg2split.b |
⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
| 3 |
|
itg2split.i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 4 |
|
itg2split.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 5 |
|
itg2split.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 6 |
|
itg2split.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 7 |
|
itg2split.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 8 |
|
itg2split.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 9 |
|
itg2split.sf |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 10 |
|
itg2split.sg |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 11 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 12 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 13 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝑈 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 14 |
11 13
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 15 |
14 8
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 16 |
|
itg2cl |
⊢ ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ* ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ∈ ℝ* ) |
| 18 |
9 10
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 19 |
18
|
rexrd |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) |
| 20 |
1 2 3 4 5 6 7 8 9 10
|
itg2splitlem |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 22 |
|
itg2lecl |
⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ∧ ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 23 |
15 18 20 22
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 25 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 26 |
25
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 27 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 ∈ dom ∫1 ) |
| 28 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 ∈ dom ∫1 ) |
| 29 |
27 28
|
itg1add |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ ( 𝑓 ∘f + 𝑔 ) ) = ( ( ∫1 ‘ 𝑓 ) + ( ∫1 ‘ 𝑔 ) ) ) |
| 30 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 31 |
27 28
|
i1fadd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑓 ∘f + 𝑔 ) ∈ dom ∫1 ) |
| 32 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 33 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 34 |
1 33
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 35 |
32 34
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 38 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 39 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 ∈ dom ∫1 |
| 40 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑓 |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑥 ∘r ≤ |
| 42 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 43 |
6 42
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 44 |
40 41 43
|
nfbr |
⊢ Ⅎ 𝑥 𝑓 ∘r ≤ 𝐹 |
| 45 |
39 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) |
| 46 |
|
nfv |
⊢ Ⅎ 𝑥 𝑔 ∈ dom ∫1 |
| 47 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑔 |
| 48 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 49 |
7 48
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐺 |
| 50 |
47 41 49
|
nfbr |
⊢ Ⅎ 𝑥 𝑔 ∘r ≤ 𝐺 |
| 51 |
46 50
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) |
| 52 |
45 51
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) |
| 53 |
38 52
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) |
| 54 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 55 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 56 |
27 55
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 : ℝ ⟶ ℝ ) |
| 57 |
56
|
ffnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 Fn ℝ ) |
| 58 |
|
i1ff |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) |
| 59 |
28 58
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 : ℝ ⟶ ℝ ) |
| 60 |
59
|
ffnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 Fn ℝ ) |
| 61 |
|
reex |
⊢ ℝ ∈ V |
| 62 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ℝ ∈ V ) |
| 63 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 64 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 65 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 66 |
57 60 62 62 63 64 65
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) |
| 67 |
54 66
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) |
| 68 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 69 |
56 54 68
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 70 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 71 |
59 54 70
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 72 |
69 71
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 73 |
72
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 75 |
69
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 76 |
75
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ* ) |
| 77 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 78 |
|
ffvelcdm |
⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 79 |
30 54 78
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 80 |
77 79
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
| 81 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
| 82 |
71
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 83 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) |
| 84 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 ∘r ≤ 𝐺 ) |
| 85 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → ℝ ∈ V ) |
| 86 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑔 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) |
| 87 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 88 |
87 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 89 |
88
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 90 |
89
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 91 |
90 11
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 92 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 93 |
91 92
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 94 |
93
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑔 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → 𝑔 Fn ℝ ) |
| 96 |
|
dffn5 |
⊢ ( 𝑔 Fn ℝ ↔ 𝑔 = ( 𝑥 ∈ ℝ ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 97 |
95 96
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → 𝑔 = ( 𝑥 ∈ ℝ ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 98 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 99 |
85 86 94 97 98
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → ( 𝑔 ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 100 |
60 99
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑔 ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 101 |
84 100
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 102 |
101
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 103 |
54 102
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 105 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 106 |
105
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 107 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 108 |
106 107
|
sylnib |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 109 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 110 |
108 109
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 111 |
110
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 112 |
111
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) |
| 113 |
104 112
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ 0 ) |
| 114 |
82 83 75 113
|
leadd2dd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + 0 ) ) |
| 115 |
75
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 116 |
115
|
addridd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 117 |
114 116
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 118 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 ∘r ≤ 𝐹 ) |
| 119 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → ℝ ∈ V ) |
| 120 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ V ) |
| 121 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 122 |
121 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 123 |
122
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 124 |
123
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 125 |
124 11
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 126 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 127 |
125 126
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 128 |
127
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 129 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → 𝑓 Fn ℝ ) |
| 130 |
|
dffn5 |
⊢ ( 𝑓 Fn ℝ ↔ 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 131 |
129 130
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 132 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 133 |
119 120 128 131 132
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 134 |
57 133
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 135 |
118 134
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 136 |
135
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 137 |
54 136
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 138 |
137
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 139 |
122
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐴 ⊆ 𝑈 ) |
| 140 |
139
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 141 |
140
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 𝐶 ) |
| 142 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 143 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 144 |
8
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 145 |
142 143 144
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 146 |
54 145
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 147 |
146
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 148 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 149 |
148
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 150 |
141 147 149
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 151 |
138 150
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 152 |
74 76 81 117 151
|
xrletrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 153 |
73
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 154 |
71
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 155 |
154
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ* ) |
| 156 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
| 157 |
69
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 158 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) |
| 159 |
137
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 160 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 161 |
160
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 162 |
159 161
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ 0 ) |
| 163 |
157 158 154 162
|
leadd1dd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 0 + ( 𝑔 ‘ 𝑥 ) ) ) |
| 164 |
154
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) |
| 165 |
164
|
addlidd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 0 + ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ‘ 𝑥 ) ) |
| 166 |
163 165
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑔 ‘ 𝑥 ) ) |
| 167 |
103
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 168 |
146
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 169 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 170 |
169
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 171 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 172 |
|
biorf |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 173 |
171 172
|
bitr4id |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 174 |
173
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 175 |
170 174
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ 𝐵 ) ) |
| 176 |
175
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 177 |
168 176
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 178 |
167 177
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 179 |
153 155 156 166 178
|
xrletrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 180 |
152 179
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 181 |
67 180
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 182 |
181
|
ex |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) ) |
| 183 |
53 182
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 184 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) |
| 185 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) |
| 186 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 187 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 188 |
8 187
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐻 |
| 189 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 190 |
188 189
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) |
| 191 |
185 186 190
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) |
| 192 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ) |
| 193 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 194 |
192 193
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 195 |
184 191 194
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 196 |
183 195
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 197 |
196
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 198 |
30 31 36 37 197
|
itg2uba |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ ( 𝑓 ∘f + 𝑔 ) ) ≤ ( ∫2 ‘ 𝐻 ) ) |
| 199 |
29 198
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ( ∫1 ‘ 𝑓 ) + ( ∫1 ‘ 𝑔 ) ) ≤ ( ∫2 ‘ 𝐻 ) ) |
| 200 |
26
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 201 |
|
itg1cl |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
| 202 |
28 201
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
| 203 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 204 |
200 202 203
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ( ( ∫1 ‘ 𝑓 ) + ( ∫1 ‘ 𝑔 ) ) ≤ ( ∫2 ‘ 𝐻 ) ↔ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) |
| 205 |
199 204
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) |
| 206 |
205
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) |
| 207 |
206
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) |
| 208 |
207
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) |
| 209 |
93 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 211 |
24 26
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ∈ ℝ ) |
| 212 |
211
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ∈ ℝ* ) |
| 213 |
|
itg2leub |
⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐺 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) ) |
| 214 |
210 212 213
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ( ∫2 ‘ 𝐺 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) ) |
| 215 |
208 214
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫2 ‘ 𝐺 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) |
| 216 |
21 24 26 215
|
lesubd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) |
| 217 |
216
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 218 |
217
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 219 |
127 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 220 |
23 10
|
resubcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 221 |
220
|
rexrd |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) |
| 222 |
|
itg2leub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 223 |
219 221 222
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 224 |
218 223
|
mpbird |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) |
| 225 |
|
leaddsub |
⊢ ( ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐻 ) ∈ ℝ ) → ( ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ≤ ( ∫2 ‘ 𝐻 ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 226 |
9 10 23 225
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ≤ ( ∫2 ‘ 𝐻 ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 227 |
224 226
|
mpbird |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ≤ ( ∫2 ‘ 𝐻 ) ) |
| 228 |
17 19 20 227
|
xrletrid |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |