| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2uba.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 2 |
|
itg2uba.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
| 3 |
|
itg2uba.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 4 |
|
itg2uba.4 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
| 5 |
|
itg2uba.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 6 |
|
itg1cl |
⊢ ( 𝐺 ∈ dom ∫1 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) |
| 8 |
7
|
rexrd |
⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ∈ ℝ* ) |
| 9 |
|
nulmbl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ∈ dom vol ) |
| 10 |
3 4 9
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 11 |
|
cmmbl |
⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ∈ dom vol ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ℝ ∖ 𝐴 ) ∈ dom vol ) |
| 13 |
|
ifnot |
⊢ if ( ¬ 𝑥 ∈ 𝐴 , ( 𝐺 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) |
| 14 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 15 |
14
|
baibr |
⊢ ( 𝑥 ∈ ℝ → ( ¬ 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) ) |
| 16 |
15
|
ifbid |
⊢ ( 𝑥 ∈ ℝ → if ( ¬ 𝑥 ∈ 𝐴 , ( 𝐺 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 17 |
13 16
|
eqtr3id |
⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = if ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 18 |
17
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 19 |
18
|
i1fres |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ ( ℝ ∖ 𝐴 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 ) |
| 20 |
2 12 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 ) |
| 21 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 23 |
22
|
rexrd |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ ℝ* ) |
| 24 |
|
itg2cl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 25 |
1 24
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 26 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
| 27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 28 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 29 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 30 |
27 28 29
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 31 |
30
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 32 |
|
eldif |
⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 33 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 35 |
33 34
|
ifbieq2d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) ) |
| 36 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) |
| 37 |
|
c0ex |
⊢ 0 ∈ V |
| 38 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑦 ) ∈ V |
| 39 |
37 38
|
ifex |
⊢ if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) ∈ V |
| 40 |
35 36 39
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) ) |
| 41 |
|
iffalse |
⊢ ( ¬ 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 42 |
40 41
|
sylan9eq |
⊢ ( ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 43 |
32 42
|
sylbi |
⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 45 |
31 44
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
| 46 |
2 3 4 20 45
|
itg1lea |
⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ≤ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 47 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = 0 ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = 0 ) |
| 49 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 50 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 51 |
49 50
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 52 |
51
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 54 |
48 53
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 55 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 57 |
14 5
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 58 |
57
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 59 |
56 58
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 60 |
54 59
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 61 |
60
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 62 |
|
reex |
⊢ ℝ ∈ V |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 64 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
| 65 |
37 64
|
ifex |
⊢ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ∈ V |
| 66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
| 67 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
| 68 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 69 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 70 |
63 66 67 68 69
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 71 |
61 70
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∘r ≤ 𝐹 ) |
| 72 |
|
itg2ub |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 73 |
1 20 71 72
|
syl3anc |
⊢ ( 𝜑 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 74 |
8 23 25 46 73
|
xrletrd |
⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |