| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mono.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 2 |
|
itg2mono.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 3 |
|
itg2mono.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 4 |
|
itg2mono.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 5 |
|
itg2mono.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 6 |
|
itg2mono.6 |
⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) |
| 7 |
|
itg2mono.7 |
⊢ ( 𝜑 → 𝑇 ∈ ( 0 (,) 1 ) ) |
| 8 |
|
itg2mono.8 |
⊢ ( 𝜑 → 𝐻 ∈ dom ∫1 ) |
| 9 |
|
itg2mono.9 |
⊢ ( 𝜑 → 𝐻 ∘r ≤ 𝐺 ) |
| 10 |
|
itg2mono.10 |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 11 |
|
itg2mono.11 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 13 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 15 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 17 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 18 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 19 |
3 17 18
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 20 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 21 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 22 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑇 ∈ ( 0 (,) 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1 ) ) ) |
| 23 |
20 21 22
|
mp2an |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1 ) ) |
| 24 |
7 23
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1 ) ) |
| 25 |
24
|
simp1d |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 26 |
25
|
renegcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℝ ) |
| 27 |
8 26
|
i1fmulc |
⊢ ( 𝜑 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 ) |
| 29 |
|
i1ff |
⊢ ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) : ℝ ⟶ ℝ ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) : ℝ ⟶ ℝ ) |
| 31 |
|
reex |
⊢ ℝ ∈ V |
| 32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℝ ∈ V ) |
| 33 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 34 |
16 19 30 32 32 33
|
off |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) |
| 36 |
35
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) Fn ℝ ) |
| 37 |
|
elpreima |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) Fn ℝ → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) ) |
| 39 |
14 38
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) |
| 40 |
|
elioomnf |
⊢ ( 0 ∈ ℝ* → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) ) |
| 41 |
20 40
|
ax-mp |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) |
| 42 |
34
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 43 |
42
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) ) |
| 44 |
41 43
|
bitr4id |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) |
| 45 |
3
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) Fn ℝ ) |
| 46 |
30
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) Fn ℝ ) |
| 47 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 48 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - 𝑇 ∈ ℝ ) |
| 49 |
|
i1ff |
⊢ ( 𝐻 ∈ dom ∫1 → 𝐻 : ℝ ⟶ ℝ ) |
| 50 |
8 49
|
syl |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ℝ ) |
| 51 |
50
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ℝ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐻 Fn ℝ ) |
| 53 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 54 |
32 48 52 53
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ‘ 𝑥 ) = ( - 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 55 |
25
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 57 |
50
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 59 |
58
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℂ ) |
| 60 |
56 59
|
mulneg1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑇 · ( 𝐻 ‘ 𝑥 ) ) = - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 61 |
54 60
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ‘ 𝑥 ) = - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 62 |
45 46 32 32 33 47 61
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) + - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 63 |
19
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 65 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 66 |
65 57
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 67 |
66
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 68 |
67
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℂ ) |
| 69 |
64 68
|
negsubd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) + - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 70 |
62 69
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 71 |
70
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) < 0 ) ) |
| 72 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 73 |
63 67 72
|
ltsubaddd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) < 0 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 0 + ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 74 |
68
|
addlidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 0 + ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 75 |
74
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 0 + ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 76 |
71 73 75
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 77 |
39 44 76
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 78 |
77
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ¬ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 79 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) |
| 80 |
79
|
baib |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) |
| 81 |
80
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) |
| 82 |
67 63
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 83 |
78 81 82
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 84 |
83
|
rabbi2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ℝ ∩ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 85 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 86 |
|
i1fmbf |
⊢ ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ MblFn ) |
| 87 |
28 86
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ MblFn ) |
| 88 |
2 87
|
mbfadd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ∈ MblFn ) |
| 89 |
|
mbfima |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ∈ MblFn ∧ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) → ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 90 |
88 34 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 91 |
|
cmmbl |
⊢ ( ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol → ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) |
| 92 |
90 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) |
| 93 |
|
inmbl |
⊢ ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) → ( ℝ ∩ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) ∈ dom vol ) |
| 94 |
85 92 93
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ℝ ∩ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) ∈ dom vol ) |
| 95 |
84 94
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ∈ dom vol ) |
| 96 |
95 11
|
fmptd |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ dom vol ) |
| 97 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 99 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 100 |
98 99
|
breq12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 101 |
100
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 102 |
97 101
|
sylib |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 103 |
102
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 104 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 105 |
98
|
feq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 106 |
105
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 107 |
104 106
|
sylib |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 108 |
107
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 109 |
108
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) Fn ℝ ) |
| 110 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
| 111 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 112 |
111
|
feq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 113 |
112
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑗 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 114 |
104 110 113
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 115 |
114
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) Fn ℝ ) |
| 116 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ℝ ∈ V ) |
| 117 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 118 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 119 |
109 115 116 116 33 117 118
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 120 |
103 119
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 121 |
120
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 122 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 123 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐻 : ℝ ⟶ ℝ ) |
| 124 |
123
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 125 |
122 124
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 126 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ℝ ) |
| 127 |
108 17 126
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ℝ ) |
| 128 |
127
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 129 |
|
fss |
⊢ ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ℝ ) |
| 130 |
114 17 129
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ℝ ) |
| 131 |
130
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 132 |
|
letr |
⊢ ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 133 |
125 128 131 132
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 134 |
121 133
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 135 |
134
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ⊆ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 136 |
98
|
fveq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 137 |
136
|
breq2d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 138 |
137
|
rabbidv |
⊢ ( 𝑛 = 𝑗 → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 139 |
31
|
rabex |
⊢ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ∈ V |
| 140 |
138 11 139
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ 𝑗 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 141 |
140
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑗 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 142 |
110
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 143 |
111
|
fveq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 144 |
143
|
breq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 145 |
144
|
rabbidv |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 146 |
31
|
rabex |
⊢ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ∈ V |
| 147 |
145 11 146
|
fvmpt |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 148 |
142 147
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 149 |
135 141 148
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑗 ) ⊆ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 150 |
66
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 151 |
57
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 152 |
63
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 153 |
152
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ ) |
| 154 |
153
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 155 |
|
1nn |
⊢ 1 ∈ ℕ |
| 156 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 157 |
156 152
|
dmmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ℕ ) |
| 158 |
155 157
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 159 |
158
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 160 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ) |
| 161 |
160
|
necon3bii |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 162 |
159 161
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 163 |
153
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 164 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) → ( 𝑧 ≤ 𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 165 |
164
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 166 |
163 165
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 167 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 168 |
167
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 169 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V |
| 170 |
168 156 169
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 171 |
170
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 172 |
171
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 173 |
168
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 174 |
173
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 175 |
172 174
|
bitr4i |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 176 |
166 175
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 177 |
176
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 178 |
5 177
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) |
| 179 |
154 162 178
|
suprcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 180 |
179
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 181 |
24
|
simp3d |
⊢ ( 𝜑 → 𝑇 < 1 ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 𝑇 < 1 ) |
| 183 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 𝑇 ∈ ℝ ) |
| 184 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 185 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 0 < ( 𝐻 ‘ 𝑥 ) ) |
| 186 |
|
ltmul1 |
⊢ ( ( 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐻 ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 < 1 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 1 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 187 |
183 184 151 185 186
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 < 1 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 1 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 188 |
182 187
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 1 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 189 |
151
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℂ ) |
| 190 |
189
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 1 · ( 𝐻 ‘ 𝑥 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
| 191 |
188 190
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 𝐻 ‘ 𝑥 ) ) |
| 192 |
179 1
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 193 |
192
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 194 |
31
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 195 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 196 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) |
| 197 |
196
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 198 |
197
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 199 |
198
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 200 |
|
ltso |
⊢ < Or ℝ |
| 201 |
200
|
supex |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ∈ V |
| 202 |
199 1 201
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ → ( 𝐺 ‘ 𝑦 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 203 |
202
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ‘ 𝑦 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 204 |
51 193 194 194 33 195 203
|
ofrfval |
⊢ ( 𝜑 → ( 𝐻 ∘r ≤ 𝐺 ↔ ∀ 𝑦 ∈ ℝ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) ) |
| 205 |
9 204
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 206 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 207 |
206 199
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) ) |
| 208 |
207
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℝ ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 209 |
205 208
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 210 |
209
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 211 |
210
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 212 |
150 151 180 191 211
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 213 |
154
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 214 |
162
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 215 |
178
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) |
| 216 |
|
suprlub |
⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ∧ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ) ) |
| 217 |
213 214 215 150 216
|
syl31anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ) ) |
| 218 |
212 217
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ) |
| 219 |
163
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 220 |
|
breq2 |
⊢ ( 𝑤 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) |
| 221 |
220
|
rexrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) |
| 222 |
219 221
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) |
| 223 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ V |
| 224 |
136 156 223
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 225 |
224
|
breq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 226 |
225
|
rexbiia |
⊢ ( ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 227 |
222 226
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 228 |
218 227
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 229 |
183 151
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 230 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 231 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 232 |
230 231
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 233 |
|
elrege0 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 234 |
232 233
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 235 |
234
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 236 |
235
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 237 |
|
ltle |
⊢ ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 238 |
229 236 237
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 239 |
238
|
reximdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 240 |
228 239
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 241 |
240
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 242 |
155
|
ne0ii |
⊢ ℕ ≠ ∅ |
| 243 |
66
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 244 |
243
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 245 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℝ ) |
| 246 |
234
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 247 |
246
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 248 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑥 ) ≤ 0 ) |
| 249 |
57
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 250 |
249
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 251 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
| 252 |
24
|
simp2d |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 253 |
252
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 < 𝑇 ) |
| 254 |
|
lemul2 |
⊢ ( ( ( 𝐻 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) → ( ( 𝐻 ‘ 𝑥 ) ≤ 0 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( 𝑇 · 0 ) ) ) |
| 255 |
250 245 251 253 254
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑥 ) ≤ 0 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( 𝑇 · 0 ) ) ) |
| 256 |
248 255
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( 𝑇 · 0 ) ) |
| 257 |
251
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
| 258 |
257
|
mul01d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · 0 ) = 0 ) |
| 259 |
256 258
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ 0 ) |
| 260 |
246
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 261 |
244 245 247 259 260
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 262 |
261
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ∀ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 263 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 264 |
242 262 263
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 265 |
264
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 266 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 267 |
241 265 266 57
|
ltlecasei |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 268 |
267
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 269 |
|
rabid2 |
⊢ ( ℝ = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 270 |
268 269
|
sylibr |
⊢ ( 𝜑 → ℝ = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 271 |
|
iunrab |
⊢ ∪ 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } |
| 272 |
270 271
|
eqtr4di |
⊢ ( 𝜑 → ℝ = ∪ 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 273 |
141
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( 𝐴 ‘ 𝑗 ) = ∪ 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 274 |
96
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ ) |
| 275 |
|
fniunfv |
⊢ ( 𝐴 Fn ℕ → ∪ 𝑗 ∈ ℕ ( 𝐴 ‘ 𝑗 ) = ∪ ran 𝐴 ) |
| 276 |
274 275
|
syl |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( 𝐴 ‘ 𝑗 ) = ∪ ran 𝐴 ) |
| 277 |
272 273 276
|
3eqtr2rd |
⊢ ( 𝜑 → ∪ ran 𝐴 = ℝ ) |
| 278 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) |
| 279 |
96 149 277 8 278
|
itg1climres |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ⇝ ( ∫1 ‘ 𝐻 ) ) |
| 280 |
|
nnex |
⊢ ℕ ∈ V |
| 281 |
280
|
mptex |
⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ∈ V |
| 282 |
281
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ∈ V ) |
| 283 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 284 |
283
|
eleq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) ↔ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) ) |
| 285 |
284
|
ifbid |
⊢ ( 𝑗 = 𝑘 → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) |
| 286 |
285
|
mpteq2dv |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) |
| 287 |
286
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 288 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 289 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ V |
| 290 |
287 288 289
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 291 |
290
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 292 |
96
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ dom vol ) |
| 293 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) |
| 294 |
293
|
i1fres |
⊢ ( ( 𝐻 ∈ dom ∫1 ∧ ( 𝐴 ‘ 𝑘 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 295 |
8 292 294
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 296 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 297 |
295 296
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 298 |
291 297
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 299 |
298
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 300 |
287
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 301 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 302 |
|
ovex |
⊢ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ∈ V |
| 303 |
300 301 302
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 304 |
290
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 305 |
303 304
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) ) |
| 306 |
305
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) ) |
| 307 |
12 13 279 55 282 299 306
|
climmulc2 |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ⇝ ( 𝑇 · ( ∫1 ‘ 𝐻 ) ) ) |
| 308 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 309 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 310 |
3 308 309
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 311 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
| 312 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 313 |
310 312
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 314 |
313
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 315 |
314
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 316 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ V |
| 317 |
316
|
elabrex |
⊢ ( 𝑛 ∈ ℕ → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } ) |
| 318 |
317
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } ) |
| 319 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 320 |
319
|
rnmpt |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } |
| 321 |
318 320
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 322 |
|
supxrub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 323 |
315 321 322
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 324 |
323 6
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) |
| 325 |
|
itg2lecl |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ∈ ℝ ∧ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 326 |
310 311 324 325
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 327 |
326
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 328 |
310
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 329 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 330 |
329
|
feq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 331 |
330
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 332 |
328 331
|
sylib |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 333 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 334 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 335 |
334
|
feq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 336 |
335
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 337 |
332 333 336
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 338 |
|
itg2le |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 339 |
310 337 4 338
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 340 |
339
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 341 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 342 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 343 |
341 319 342
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 344 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 345 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 346 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ V |
| 347 |
345 319 346
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 348 |
344 347
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 349 |
343 348
|
breq12d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 350 |
349
|
ralbiia |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 351 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 352 |
351
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 353 |
341 352
|
breq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 354 |
353
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 355 |
350 354
|
bitr4i |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 356 |
340 355
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 357 |
356
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 358 |
324
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) |
| 359 |
343
|
breq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 360 |
359
|
ralbiia |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
| 361 |
341
|
breq1d |
⊢ ( 𝑛 = 𝑘 → ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 362 |
361
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
| 363 |
360 362
|
bitr4i |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 364 |
|
breq2 |
⊢ ( 𝑥 = 𝑆 → ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) ) |
| 365 |
364
|
ralbidv |
⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) ) |
| 366 |
363 365
|
bitrid |
⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) ) |
| 367 |
366
|
rspcev |
⊢ ( ( 𝑆 ∈ ℝ ∧ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 368 |
10 358 367
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 369 |
12 13 327 357 368
|
climsup |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 370 |
327
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 371 |
319 313
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ℕ ) |
| 372 |
242
|
a1i |
⊢ ( 𝜑 → ℕ ≠ ∅ ) |
| 373 |
371 372
|
eqnetrd |
⊢ ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ) |
| 374 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ∅ ) |
| 375 |
374
|
necon3bii |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ) |
| 376 |
373 375
|
sylib |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ) |
| 377 |
316 319
|
fnmpti |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ |
| 378 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 379 |
378
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 380 |
377 379
|
mp1i |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 381 |
380
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 382 |
368 381
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ) |
| 383 |
|
supxrre |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 384 |
370 376 382 383
|
syl3anc |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 385 |
6 384
|
eqtr2id |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) = 𝑆 ) |
| 386 |
369 385
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ 𝑆 ) |
| 387 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
| 388 |
96
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑗 ) ∈ dom vol ) |
| 389 |
278
|
i1fres |
⊢ ( ( 𝐻 ∈ dom ∫1 ∧ ( 𝐴 ‘ 𝑗 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 390 |
8 388 389
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 391 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 392 |
390 391
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 393 |
387 392
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ∈ ℝ ) |
| 394 |
393
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) : ℕ ⟶ ℝ ) |
| 395 |
394
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 396 |
327
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 397 |
329
|
feq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 398 |
397
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 399 |
104 398
|
sylib |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 400 |
399
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 401 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 402 |
400 308 401
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 403 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ℝ ∈ V ) |
| 404 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
| 405 |
404
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 406 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑥 ) ∈ V |
| 407 |
|
c0ex |
⊢ 0 ∈ V |
| 408 |
406 407
|
ifex |
⊢ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ∈ V |
| 409 |
408
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 410 |
|
fconstmpt |
⊢ ( ℝ × { 𝑇 } ) = ( 𝑥 ∈ ℝ ↦ 𝑇 ) |
| 411 |
410
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ℝ × { 𝑇 } ) = ( 𝑥 ∈ ℝ ↦ 𝑇 ) ) |
| 412 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) |
| 413 |
403 405 409 411 412
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 414 |
|
ovif2 |
⊢ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , ( 𝑇 · 0 ) ) |
| 415 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
| 416 |
415
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 · 0 ) = 0 ) |
| 417 |
416
|
ifeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , ( 𝑇 · 0 ) ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) |
| 418 |
414 417
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) |
| 419 |
418
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) |
| 420 |
413 419
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) |
| 421 |
295 404
|
i1fmulc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
| 422 |
420 421
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∈ dom ∫1 ) |
| 423 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 424 |
423
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 425 |
329
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 426 |
425
|
breq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 427 |
426
|
rabbidv |
⊢ ( 𝑛 = 𝑘 → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 428 |
31
|
rabex |
⊢ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ∈ V |
| 429 |
427 11 428
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 430 |
429
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ‘ 𝑘 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 431 |
430
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) ) |
| 432 |
431
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 433 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 434 |
433
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 435 |
432 434
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 436 |
424 435
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 437 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = 0 ) |
| 438 |
437
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = 0 ) |
| 439 |
400
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 440 |
|
elrege0 |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 441 |
440
|
simprbi |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 442 |
439 441
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 443 |
442
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 444 |
438 443
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 445 |
436 444
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 446 |
445
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 447 |
|
ovex |
⊢ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ V |
| 448 |
447 407
|
ifex |
⊢ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ∈ V |
| 449 |
448
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ∈ V ) |
| 450 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V ) |
| 451 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) |
| 452 |
400
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 453 |
403 449 450 451 452
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 454 |
446 453
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 455 |
|
itg2ub |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹 ‘ 𝑘 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 456 |
402 422 454 455
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 457 |
303
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 458 |
295 404
|
itg1mulc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 459 |
420
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ) |
| 460 |
457 458 459
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ) |
| 461 |
343
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 462 |
456 460 461
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 463 |
12 13 307 386 395 396 462
|
climle |
⊢ ( 𝜑 → ( 𝑇 · ( ∫1 ‘ 𝐻 ) ) ≤ 𝑆 ) |