| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mono.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 2 |
|
itg2mono.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 3 |
|
itg2mono.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 4 |
|
itg2mono.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 5 |
|
itg2mono.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 6 |
|
itg2mono.6 |
⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) |
| 7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 8 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 9 |
3 7 8
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 10 |
9
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 11 |
10
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 12 |
11
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ ) |
| 13 |
12
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 14 |
|
1nn |
⊢ 1 ∈ ℕ |
| 15 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 16 |
15 11
|
dmmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ℕ ) |
| 17 |
14 16
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 18 |
17
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 19 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ) |
| 20 |
19
|
necon3bii |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 21 |
18 20
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 22 |
12
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 23 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) → ( 𝑧 ≤ 𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 24 |
23
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 25 |
22 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 27 |
26
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 28 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V |
| 29 |
27 15 28
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 30 |
29
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 31 |
30
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 32 |
27
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 33 |
32
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 34 |
31 33
|
bitr4i |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 35 |
25 34
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 36 |
35
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 37 |
5 36
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) |
| 38 |
13 21 37
|
suprcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 39 |
38
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ* ) |
| 40 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 41 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 42 |
41
|
feq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 43 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 44 |
14
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 45 |
42 43 44
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 46 |
45
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 47 |
|
elrege0 |
⊢ ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) ) |
| 48 |
46 47
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) ) |
| 49 |
48
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ℝ ) |
| 50 |
48
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) |
| 51 |
41
|
fveq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) |
| 52 |
|
fvex |
⊢ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ V |
| 53 |
51 15 52
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) = ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) |
| 54 |
14 53
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) = ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) |
| 55 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 56 |
22 14 55
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 57 |
54 56
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 58 |
13 21 37 57
|
suprubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 59 |
40 49 38 50 58
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 60 |
|
elxrge0 |
⊢ ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ( 0 [,] +∞ ) ↔ ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ* ∧ 0 ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 61 |
39 59 60
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ( 0 [,] +∞ ) ) |
| 62 |
61 1
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 63 |
|
itg2cl |
⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
| 64 |
62 63
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
| 65 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 66 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 67 |
3 65 66
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 68 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 69 |
67 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 70 |
69
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 71 |
70
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 72 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 73 |
71 72
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 74 |
6 73
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 75 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 76 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 77 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 78 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 79 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → 𝑓 ∈ dom ∫1 ) |
| 80 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → 𝑓 ∘r ≤ 𝐺 ) |
| 81 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) |
| 82 |
1 75 76 77 78 6 79 80 81
|
itg2monolem3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) |
| 83 |
82
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ) → ( ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) |
| 84 |
83
|
pm2.18d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ) → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) |
| 85 |
84
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) |
| 86 |
85
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) |
| 87 |
|
itg2leub |
⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐺 ) ≤ 𝑆 ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ) |
| 88 |
62 74 87
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐺 ) ≤ 𝑆 ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ) |
| 89 |
86 88
|
mpbird |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ≤ 𝑆 ) |
| 90 |
26
|
feq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 91 |
90
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 92 |
43 91
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 93 |
92
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 94 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 95 |
93 65 94
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 96 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 97 |
13 21 37
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ) |
| 98 |
97
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ) |
| 99 |
29
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 100 |
22
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 101 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑚 ∈ ℕ ) |
| 102 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 103 |
100 101 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 104 |
99 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 105 |
|
suprub |
⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 106 |
98 104 105
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 107 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 108 |
|
ltso |
⊢ < Or ℝ |
| 109 |
108
|
supex |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ V |
| 110 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 111 |
107 109 110
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 112 |
106 111
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 113 |
112
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 114 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 115 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 116 |
114 115
|
breq12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) ) |
| 117 |
116
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) |
| 118 |
113 117
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑧 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) |
| 119 |
93
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) Fn ℝ ) |
| 120 |
38 1
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 121 |
120
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐺 Fn ℝ ) |
| 123 |
|
reex |
⊢ ℝ ∈ V |
| 124 |
123
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 125 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 126 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 127 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 128 |
119 122 124 124 125 126 127
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑚 ) ∘r ≤ 𝐺 ↔ ∀ 𝑧 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) ) |
| 129 |
118 128
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∘r ≤ 𝐺 ) |
| 130 |
|
itg2le |
⊢ ( ( ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑚 ) ∘r ≤ 𝐺 ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 131 |
95 96 129 130
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 132 |
131
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 133 |
70
|
ffnd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 134 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 135 |
134
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 136 |
133 135
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 137 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 138 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 139 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ V |
| 140 |
137 138 139
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 141 |
140
|
breq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 142 |
141
|
ralbiia |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 143 |
136 142
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 144 |
132 143
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ) |
| 145 |
|
supxrleub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 146 |
71 64 145
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 147 |
144 146
|
mpbird |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 148 |
6 147
|
eqbrtrid |
⊢ ( 𝜑 → 𝑆 ≤ ( ∫2 ‘ 𝐺 ) ) |
| 149 |
64 74 89 148
|
xrletrid |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = 𝑆 ) |