| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mono.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 2 |
|
itg2mono.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 3 |
|
itg2mono.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 4 |
|
itg2mono.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 5 |
|
itg2mono.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 6 |
|
itg2mono.6 |
⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) |
| 7 |
|
itg2monolem2.7 |
⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) |
| 8 |
|
itg2monolem2.8 |
⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) |
| 9 |
|
itg2monolem2.9 |
⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
itg2monolem2 |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 ∈ ℂ ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑃 ∈ dom ∫1 ) |
| 14 |
|
itg1cl |
⊢ ( 𝑃 ∈ dom ∫1 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ∫1 ‘ 𝑃 ) ∈ ℂ ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑡 ∈ ℝ+ ) |
| 18 |
17
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑡 ∈ ℝ ) |
| 19 |
11 18
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 + 𝑡 ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 + 𝑡 ) ∈ ℂ ) |
| 21 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 ∈ ℝ ) |
| 22 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 24 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 25 |
24
|
feq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 26 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 27 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 28 |
3 26 27
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 30 |
|
1nn |
⊢ 1 ∈ ℕ |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 32 |
25 29 31
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 33 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
| 35 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 36 |
28 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 37 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 38 |
37
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 39 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 41 |
6 40
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 42 |
|
itg2ge0 |
⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 43 |
32 42
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 44 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 45 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 46 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ V |
| 47 |
44 45 46
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 48 |
30 47
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) |
| 49 |
37
|
ffnd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 50 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 51 |
49 30 50
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 52 |
48 51
|
eqeltrrid |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 53 |
|
supxrub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 54 |
38 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 55 |
54 6
|
breqtrrdi |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ 𝑆 ) |
| 56 |
23 34 41 43 55
|
xrletrd |
⊢ ( 𝜑 → 0 ≤ 𝑆 ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 ≤ 𝑆 ) |
| 58 |
11 17
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 < ( 𝑆 + 𝑡 ) ) |
| 59 |
21 11 19 57 58
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( 𝑆 + 𝑡 ) ) |
| 60 |
59
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 + 𝑡 ) ≠ 0 ) |
| 61 |
12 16 20 60
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) = ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ) |
| 62 |
11 19 60
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ) |
| 63 |
62 15
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ) |
| 64 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 65 |
|
ifcl |
⊢ ( ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ) |
| 66 |
62 64 65
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ) |
| 67 |
66 15
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ) |
| 68 |
|
max2 |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 69 |
64 62 68
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 70 |
7 14
|
syl |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 71 |
70
|
rexrd |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) |
| 72 |
|
xrltnle |
⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
| 73 |
41 71 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
| 74 |
9 73
|
mpbird |
⊢ ( 𝜑 → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
| 76 |
21 11 15 57 75
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( ∫1 ‘ 𝑃 ) ) |
| 77 |
|
lemul1 |
⊢ ( ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ∧ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ∧ ( ( ∫1 ‘ 𝑃 ) ∈ ℝ ∧ 0 < ( ∫1 ‘ 𝑃 ) ) ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ↔ ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) ) |
| 78 |
62 66 15 76 77
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ↔ ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) ) |
| 79 |
69 78
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) |
| 80 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 81 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 82 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 83 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 84 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 1 / 2 ) ∈ ℝ ) |
| 85 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( 1 / 2 ) ) |
| 87 |
|
max1 |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ) → ( 1 / 2 ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 88 |
64 62 87
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 1 / 2 ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 89 |
21 84 66 86 88
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 90 |
20
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 + 𝑡 ) · 1 ) = ( 𝑆 + 𝑡 ) ) |
| 91 |
58 90
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 < ( ( 𝑆 + 𝑡 ) · 1 ) ) |
| 92 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 1 ∈ ℝ ) |
| 93 |
|
ltdivmul |
⊢ ( ( 𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑆 + 𝑡 ) ∈ ℝ ∧ 0 < ( 𝑆 + 𝑡 ) ) ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ↔ 𝑆 < ( ( 𝑆 + 𝑡 ) · 1 ) ) ) |
| 94 |
11 92 19 59 93
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ↔ 𝑆 < ( ( 𝑆 + 𝑡 ) · 1 ) ) ) |
| 95 |
91 94
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ) |
| 96 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 97 |
|
breq1 |
⊢ ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) = if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ↔ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) |
| 98 |
|
breq1 |
⊢ ( ( 1 / 2 ) = if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) → ( ( 1 / 2 ) < 1 ↔ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) |
| 99 |
97 98
|
ifboth |
⊢ ( ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ∧ ( 1 / 2 ) < 1 ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) |
| 100 |
95 96 99
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) |
| 101 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 102 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ( 0 (,) 1 ) ↔ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ∧ 0 < if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∧ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) ) |
| 103 |
22 101 102
|
mp2an |
⊢ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ( 0 (,) 1 ) ↔ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ∧ 0 < if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∧ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) |
| 104 |
66 89 100 103
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ( 0 (,) 1 ) ) |
| 105 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑃 ∘r ≤ 𝐺 ) |
| 106 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑃 ‘ 𝑦 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 107 |
106
|
oveq2d |
⊢ ( 𝑦 = 𝑥 → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) = ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ) |
| 108 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 109 |
107 108
|
breq12d |
⊢ ( 𝑦 = 𝑥 → ( ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ↔ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 110 |
109
|
cbvrabv |
⊢ { 𝑦 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) } = { 𝑥 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
| 111 |
110
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑦 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 112 |
1 80 81 82 83 6 104 13 105 11 111
|
itg2monolem1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ 𝑆 ) |
| 113 |
63 67 11 79 112
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ 𝑆 ) |
| 114 |
61 113
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) ≤ 𝑆 ) |
| 115 |
11 15
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ) |
| 116 |
|
ledivmul2 |
⊢ ( ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( ( 𝑆 + 𝑡 ) ∈ ℝ ∧ 0 < ( 𝑆 + 𝑡 ) ) ) → ( ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) ≤ 𝑆 ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) |
| 117 |
115 11 19 59 116
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) ≤ 𝑆 ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) |
| 118 |
114 117
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) |
| 119 |
66 15 89 76
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) |
| 120 |
21 67 11 119 112
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < 𝑆 ) |
| 121 |
|
lemul2 |
⊢ ( ( ( ∫1 ‘ 𝑃 ) ∈ ℝ ∧ ( 𝑆 + 𝑡 ) ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 0 < 𝑆 ) ) → ( ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) |
| 122 |
15 19 11 120 121
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) |
| 123 |
118 122
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) |
| 124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ℝ+ ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) |
| 125 |
|
alrple |
⊢ ( ( ( ∫1 ‘ 𝑃 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ↔ ∀ 𝑡 ∈ ℝ+ ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) ) |
| 126 |
70 10 125
|
syl2anc |
⊢ ( 𝜑 → ( ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ↔ ∀ 𝑡 ∈ ℝ+ ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) ) |
| 127 |
124 126
|
mpbird |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) |