| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mono.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 2 |
|
itg2mono.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 3 |
|
itg2mono.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 4 |
|
itg2mono.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 5 |
|
itg2mono.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 6 |
|
itg2mono.6 |
⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) |
| 7 |
|
itg2monolem2.7 |
⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) |
| 8 |
|
itg2monolem2.8 |
⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) |
| 9 |
|
itg2monolem2.9 |
⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) |
| 10 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 11 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 12 |
3 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 13 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 15 |
14
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 16 |
15
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 17 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 19 |
6 18
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 20 |
|
itg1cl |
⊢ ( 𝑃 ∈ dom ∫1 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 21 |
7 20
|
syl |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 22 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 24 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 25 |
24
|
feq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 26 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 27 |
|
1nn |
⊢ 1 ∈ ℕ |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 29 |
25 26 28
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 30 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
| 32 |
|
itg2ge0 |
⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 33 |
29 32
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 34 |
|
mnflt0 |
⊢ -∞ < 0 |
| 35 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 36 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 37 |
22 35 31 36
|
mp3an12i |
⊢ ( 𝜑 → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 38 |
34 37
|
mpani |
⊢ ( 𝜑 → ( 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 39 |
33 38
|
mpd |
⊢ ( 𝜑 → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 40 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 41 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 42 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ V |
| 43 |
40 41 42
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 44 |
27 43
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) |
| 45 |
15
|
ffnd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 46 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 47 |
45 27 46
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 48 |
44 47
|
eqeltrrid |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 49 |
|
supxrub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 50 |
16 48 49
|
syl2anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 51 |
50 6
|
breqtrrdi |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ 𝑆 ) |
| 52 |
23 31 19 39 51
|
xrltletrd |
⊢ ( 𝜑 → -∞ < 𝑆 ) |
| 53 |
21
|
rexrd |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) |
| 54 |
|
xrltnle |
⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
| 55 |
19 53 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
| 56 |
9 55
|
mpbird |
⊢ ( 𝜑 → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
| 57 |
19 53 56
|
xrltled |
⊢ ( 𝜑 → 𝑆 ≤ ( ∫1 ‘ 𝑃 ) ) |
| 58 |
|
xrre |
⊢ ( ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ ) ∧ ( -∞ < 𝑆 ∧ 𝑆 ≤ ( ∫1 ‘ 𝑃 ) ) ) → 𝑆 ∈ ℝ ) |
| 59 |
19 21 52 57 58
|
syl22anc |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |