Step |
Hyp |
Ref |
Expression |
1 |
|
itg2mono.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
2 |
|
itg2mono.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
3 |
|
itg2mono.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
4 |
|
itg2mono.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
5 |
|
itg2mono.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
6 |
|
itg2mono.6 |
⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) |
7 |
|
itg2monolem2.7 |
⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) |
8 |
|
itg2monolem2.8 |
⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) |
9 |
|
itg2monolem2.9 |
⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) |
10 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
11 |
|
fss |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
12 |
3 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
13 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
15 |
14
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
16 |
15
|
frnd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
17 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
19 |
6 18
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
20 |
|
itg1cl |
⊢ ( 𝑃 ∈ dom ∫1 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
21 |
7 20
|
syl |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
22 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
23 |
22
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
24 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
25 |
24
|
feq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
26 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
27 |
|
1nn |
⊢ 1 ∈ ℕ |
28 |
27
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
29 |
25 26 28
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
30 |
|
itg2cl |
⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
32 |
|
itg2ge0 |
⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
33 |
29 32
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
34 |
|
mnflt0 |
⊢ -∞ < 0 |
35 |
|
0xr |
⊢ 0 ∈ ℝ* |
36 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
37 |
22 35 31 36
|
mp3an12i |
⊢ ( 𝜑 → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
38 |
34 37
|
mpani |
⊢ ( 𝜑 → ( 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
39 |
33 38
|
mpd |
⊢ ( 𝜑 → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
40 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
41 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
42 |
|
fvex |
⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ V |
43 |
40 41 42
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
44 |
27 43
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) |
45 |
15
|
ffnd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
46 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
47 |
45 27 46
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
48 |
44 47
|
eqeltrrid |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
49 |
|
supxrub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
50 |
16 48 49
|
syl2anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
51 |
50 6
|
breqtrrdi |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ 𝑆 ) |
52 |
23 31 19 39 51
|
xrltletrd |
⊢ ( 𝜑 → -∞ < 𝑆 ) |
53 |
21
|
rexrd |
⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) |
54 |
|
xrltnle |
⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
55 |
19 53 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
56 |
9 55
|
mpbird |
⊢ ( 𝜑 → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
57 |
19 53 56
|
xrltled |
⊢ ( 𝜑 → 𝑆 ≤ ( ∫1 ‘ 𝑃 ) ) |
58 |
|
xrre |
⊢ ( ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ ) ∧ ( -∞ < 𝑆 ∧ 𝑆 ≤ ( ∫1 ‘ 𝑃 ) ) ) → 𝑆 ∈ ℝ ) |
59 |
19 21 52 57 58
|
syl22anc |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |