| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mono.1 |
|- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 2 |
|
itg2mono.2 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
| 3 |
|
itg2mono.3 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
| 4 |
|
itg2mono.4 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
| 5 |
|
itg2mono.5 |
|- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
| 6 |
|
itg2mono.6 |
|- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
| 7 |
|
itg2monolem2.7 |
|- ( ph -> P e. dom S.1 ) |
| 8 |
|
itg2monolem2.8 |
|- ( ph -> P oR <_ G ) |
| 9 |
|
itg2monolem2.9 |
|- ( ph -> -. ( S.1 ` P ) <_ S ) |
| 10 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 11 |
|
fss |
|- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 12 |
3 10 11
|
sylancl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 13 |
|
itg2cl |
|- ( ( F ` n ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 14 |
12 13
|
syl |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 15 |
14
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR* ) |
| 16 |
15
|
frnd |
|- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* ) |
| 17 |
|
supxrcl |
|- ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) e. RR* ) |
| 18 |
16 17
|
syl |
|- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) e. RR* ) |
| 19 |
6 18
|
eqeltrid |
|- ( ph -> S e. RR* ) |
| 20 |
|
itg1cl |
|- ( P e. dom S.1 -> ( S.1 ` P ) e. RR ) |
| 21 |
7 20
|
syl |
|- ( ph -> ( S.1 ` P ) e. RR ) |
| 22 |
|
mnfxr |
|- -oo e. RR* |
| 23 |
22
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 24 |
|
fveq2 |
|- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
| 25 |
24
|
feq1d |
|- ( n = 1 -> ( ( F ` n ) : RR --> ( 0 [,] +oo ) <-> ( F ` 1 ) : RR --> ( 0 [,] +oo ) ) ) |
| 26 |
12
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 27 |
|
1nn |
|- 1 e. NN |
| 28 |
27
|
a1i |
|- ( ph -> 1 e. NN ) |
| 29 |
25 26 28
|
rspcdva |
|- ( ph -> ( F ` 1 ) : RR --> ( 0 [,] +oo ) ) |
| 30 |
|
itg2cl |
|- ( ( F ` 1 ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` 1 ) ) e. RR* ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( S.2 ` ( F ` 1 ) ) e. RR* ) |
| 32 |
|
itg2ge0 |
|- ( ( F ` 1 ) : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` ( F ` 1 ) ) ) |
| 33 |
29 32
|
syl |
|- ( ph -> 0 <_ ( S.2 ` ( F ` 1 ) ) ) |
| 34 |
|
mnflt0 |
|- -oo < 0 |
| 35 |
|
0xr |
|- 0 e. RR* |
| 36 |
|
xrltletr |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ ( S.2 ` ( F ` 1 ) ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` ( F ` 1 ) ) ) -> -oo < ( S.2 ` ( F ` 1 ) ) ) ) |
| 37 |
22 35 31 36
|
mp3an12i |
|- ( ph -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` ( F ` 1 ) ) ) -> -oo < ( S.2 ` ( F ` 1 ) ) ) ) |
| 38 |
34 37
|
mpani |
|- ( ph -> ( 0 <_ ( S.2 ` ( F ` 1 ) ) -> -oo < ( S.2 ` ( F ` 1 ) ) ) ) |
| 39 |
33 38
|
mpd |
|- ( ph -> -oo < ( S.2 ` ( F ` 1 ) ) ) |
| 40 |
|
2fveq3 |
|- ( n = 1 -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` 1 ) ) ) |
| 41 |
|
eqid |
|- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) |
| 42 |
|
fvex |
|- ( S.2 ` ( F ` 1 ) ) e. _V |
| 43 |
40 41 42
|
fvmpt |
|- ( 1 e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) = ( S.2 ` ( F ` 1 ) ) ) |
| 44 |
27 43
|
ax-mp |
|- ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) = ( S.2 ` ( F ` 1 ) ) |
| 45 |
15
|
ffnd |
|- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN ) |
| 46 |
|
fnfvelrn |
|- ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN /\ 1 e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 47 |
45 27 46
|
sylancl |
|- ( ph -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 48 |
44 47
|
eqeltrrid |
|- ( ph -> ( S.2 ` ( F ` 1 ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 49 |
|
supxrub |
|- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* /\ ( S.2 ` ( F ` 1 ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) -> ( S.2 ` ( F ` 1 ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
| 50 |
16 48 49
|
syl2anc |
|- ( ph -> ( S.2 ` ( F ` 1 ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
| 51 |
50 6
|
breqtrrdi |
|- ( ph -> ( S.2 ` ( F ` 1 ) ) <_ S ) |
| 52 |
23 31 19 39 51
|
xrltletrd |
|- ( ph -> -oo < S ) |
| 53 |
21
|
rexrd |
|- ( ph -> ( S.1 ` P ) e. RR* ) |
| 54 |
|
xrltnle |
|- ( ( S e. RR* /\ ( S.1 ` P ) e. RR* ) -> ( S < ( S.1 ` P ) <-> -. ( S.1 ` P ) <_ S ) ) |
| 55 |
19 53 54
|
syl2anc |
|- ( ph -> ( S < ( S.1 ` P ) <-> -. ( S.1 ` P ) <_ S ) ) |
| 56 |
9 55
|
mpbird |
|- ( ph -> S < ( S.1 ` P ) ) |
| 57 |
19 53 56
|
xrltled |
|- ( ph -> S <_ ( S.1 ` P ) ) |
| 58 |
|
xrre |
|- ( ( ( S e. RR* /\ ( S.1 ` P ) e. RR ) /\ ( -oo < S /\ S <_ ( S.1 ` P ) ) ) -> S e. RR ) |
| 59 |
19 21 52 57 58
|
syl22anc |
|- ( ph -> S e. RR ) |