Metamath Proof Explorer


Theorem itg2monolem1

Description: Lemma for itg2mono . We show that for any constant t less than one, t x. S.1 H is less than S , and so S.1 H <_ S , which is one half of the equality in itg2mono . Consider the sequence A ( n ) = { x | t x. H <_ F ( n ) } . This is an increasing sequence of measurable sets whose union is RR , and so ` H |`A ( n ) has an integral which equals S.1 H in the limit, by itg1climres . Then by taking the limit in ` ( t x. H ) |`A ( n ) <_ F ( n ) , we get t x. S.1 H <_ S as desired. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 G = x sup ran n F n x <
itg2mono.2 φ n F n MblFn
itg2mono.3 φ n F n : 0 +∞
itg2mono.4 φ n F n f F n + 1
itg2mono.5 φ x y n F n x y
itg2mono.6 S = sup ran n 2 F n * <
itg2mono.7 φ T 0 1
itg2mono.8 φ H dom 1
itg2mono.9 φ H f G
itg2mono.10 φ S
itg2mono.11 A = n x | T H x F n x
Assertion itg2monolem1 φ T 1 H S

Proof

Step Hyp Ref Expression
1 itg2mono.1 G = x sup ran n F n x <
2 itg2mono.2 φ n F n MblFn
3 itg2mono.3 φ n F n : 0 +∞
4 itg2mono.4 φ n F n f F n + 1
5 itg2mono.5 φ x y n F n x y
6 itg2mono.6 S = sup ran n 2 F n * <
7 itg2mono.7 φ T 0 1
8 itg2mono.8 φ H dom 1
9 itg2mono.9 φ H f G
10 itg2mono.10 φ S
11 itg2mono.11 A = n x | T H x F n x
12 nnuz = 1
13 1zzd φ 1
14 simpr φ n x x
15 readdcl x y x + y
16 15 adantl φ n x y x + y
17 rge0ssre 0 +∞
18 fss F n : 0 +∞ 0 +∞ F n :
19 3 17 18 sylancl φ n F n :
20 0xr 0 *
21 1xr 1 *
22 elioo2 0 * 1 * T 0 1 T 0 < T T < 1
23 20 21 22 mp2an T 0 1 T 0 < T T < 1
24 7 23 sylib φ T 0 < T T < 1
25 24 simp1d φ T
26 25 renegcld φ T
27 8 26 i1fmulc φ × T × f H dom 1
28 27 adantr φ n × T × f H dom 1
29 i1ff × T × f H dom 1 × T × f H :
30 28 29 syl φ n × T × f H :
31 reex V
32 31 a1i φ n V
33 inidm =
34 16 19 30 32 32 33 off φ n F n + f × T × f H :
35 34 adantr φ n x F n + f × T × f H :
36 35 ffnd φ n x F n + f × T × f H Fn
37 elpreima F n + f × T × f H Fn x F n + f × T × f H -1 −∞ 0 x F n + f × T × f H x −∞ 0
38 36 37 syl φ n x x F n + f × T × f H -1 −∞ 0 x F n + f × T × f H x −∞ 0
39 14 38 mpbirand φ n x x F n + f × T × f H -1 −∞ 0 F n + f × T × f H x −∞ 0
40 elioomnf 0 * F n + f × T × f H x −∞ 0 F n + f × T × f H x F n + f × T × f H x < 0
41 20 40 ax-mp F n + f × T × f H x −∞ 0 F n + f × T × f H x F n + f × T × f H x < 0
42 34 ffvelrnda φ n x F n + f × T × f H x
43 42 biantrurd φ n x F n + f × T × f H x < 0 F n + f × T × f H x F n + f × T × f H x < 0
44 41 43 bitr4id φ n x F n + f × T × f H x −∞ 0 F n + f × T × f H x < 0
45 3 ffnd φ n F n Fn
46 30 ffnd φ n × T × f H Fn
47 eqidd φ n x F n x = F n x
48 26 adantr φ n T
49 i1ff H dom 1 H :
50 8 49 syl φ H :
51 50 ffnd φ H Fn
52 51 adantr φ n H Fn
53 eqidd φ n x H x = H x
54 32 48 52 53 ofc1 φ n x × T × f H x = T H x
55 25 recnd φ T
56 55 ad2antrr φ n x T
57 50 ffvelrnda φ x H x
58 57 adantlr φ n x H x
59 58 recnd φ n x H x
60 56 59 mulneg1d φ n x T H x = T H x
61 54 60 eqtrd φ n x × T × f H x = T H x
62 45 46 32 32 33 47 61 ofval φ n x F n + f × T × f H x = F n x + T H x
63 19 ffvelrnda φ n x F n x
64 63 recnd φ n x F n x
65 25 adantr φ x T
66 65 57 remulcld φ x T H x
67 66 adantlr φ n x T H x
68 67 recnd φ n x T H x
69 64 68 negsubd φ n x F n x + T H x = F n x T H x
70 62 69 eqtrd φ n x F n + f × T × f H x = F n x T H x
71 70 breq1d φ n x F n + f × T × f H x < 0 F n x T H x < 0
72 0red φ n x 0
73 63 67 72 ltsubaddd φ n x F n x T H x < 0 F n x < 0 + T H x
74 68 addid2d φ n x 0 + T H x = T H x
75 74 breq2d φ n x F n x < 0 + T H x F n x < T H x
76 71 73 75 3bitrd φ n x F n + f × T × f H x < 0 F n x < T H x
77 39 44 76 3bitrd φ n x x F n + f × T × f H -1 −∞ 0 F n x < T H x
78 77 notbid φ n x ¬ x F n + f × T × f H -1 −∞ 0 ¬ F n x < T H x
79 eldif x F n + f × T × f H -1 −∞ 0 x ¬ x F n + f × T × f H -1 −∞ 0
80 79 baib x x F n + f × T × f H -1 −∞ 0 ¬ x F n + f × T × f H -1 −∞ 0
81 80 adantl φ n x x F n + f × T × f H -1 −∞ 0 ¬ x F n + f × T × f H -1 −∞ 0
82 67 63 lenltd φ n x T H x F n x ¬ F n x < T H x
83 78 81 82 3bitr4d φ n x x F n + f × T × f H -1 −∞ 0 T H x F n x
84 83 rabbi2dva φ n F n + f × T × f H -1 −∞ 0 = x | T H x F n x
85 rembl dom vol
86 i1fmbf × T × f H dom 1 × T × f H MblFn
87 28 86 syl φ n × T × f H MblFn
88 2 87 mbfadd φ n F n + f × T × f H MblFn
89 mbfima F n + f × T × f H MblFn F n + f × T × f H : F n + f × T × f H -1 −∞ 0 dom vol
90 88 34 89 syl2anc φ n F n + f × T × f H -1 −∞ 0 dom vol
91 cmmbl F n + f × T × f H -1 −∞ 0 dom vol F n + f × T × f H -1 −∞ 0 dom vol
92 90 91 syl φ n F n + f × T × f H -1 −∞ 0 dom vol
93 inmbl dom vol F n + f × T × f H -1 −∞ 0 dom vol F n + f × T × f H -1 −∞ 0 dom vol
94 85 92 93 sylancr φ n F n + f × T × f H -1 −∞ 0 dom vol
95 84 94 eqeltrrd φ n x | T H x F n x dom vol
96 95 11 fmptd φ A : dom vol
97 4 ralrimiva φ n F n f F n + 1
98 fveq2 n = j F n = F j
99 fvoveq1 n = j F n + 1 = F j + 1
100 98 99 breq12d n = j F n f F n + 1 F j f F j + 1
101 100 cbvralvw n F n f F n + 1 j F j f F j + 1
102 97 101 sylib φ j F j f F j + 1
103 102 r19.21bi φ j F j f F j + 1
104 3 ralrimiva φ n F n : 0 +∞
105 98 feq1d n = j F n : 0 +∞ F j : 0 +∞
106 105 cbvralvw n F n : 0 +∞ j F j : 0 +∞
107 104 106 sylib φ j F j : 0 +∞
108 107 r19.21bi φ j F j : 0 +∞
109 108 ffnd φ j F j Fn
110 peano2nn j j + 1
111 fveq2 n = j + 1 F n = F j + 1
112 111 feq1d n = j + 1 F n : 0 +∞ F j + 1 : 0 +∞
113 112 rspccva n F n : 0 +∞ j + 1 F j + 1 : 0 +∞
114 104 110 113 syl2an φ j F j + 1 : 0 +∞
115 114 ffnd φ j F j + 1 Fn
116 31 a1i φ j V
117 eqidd φ j x F j x = F j x
118 eqidd φ j x F j + 1 x = F j + 1 x
119 109 115 116 116 33 117 118 ofrfval φ j F j f F j + 1 x F j x F j + 1 x
120 103 119 mpbid φ j x F j x F j + 1 x
121 120 r19.21bi φ j x F j x F j + 1 x
122 25 ad2antrr φ j x T
123 50 adantr φ j H :
124 123 ffvelrnda φ j x H x
125 122 124 remulcld φ j x T H x
126 fss F j : 0 +∞ 0 +∞ F j :
127 108 17 126 sylancl φ j F j :
128 127 ffvelrnda φ j x F j x
129 fss F j + 1 : 0 +∞ 0 +∞ F j + 1 :
130 114 17 129 sylancl φ j F j + 1 :
131 130 ffvelrnda φ j x F j + 1 x
132 letr T H x F j x F j + 1 x T H x F j x F j x F j + 1 x T H x F j + 1 x
133 125 128 131 132 syl3anc φ j x T H x F j x F j x F j + 1 x T H x F j + 1 x
134 121 133 mpan2d φ j x T H x F j x T H x F j + 1 x
135 134 ss2rabdv φ j x | T H x F j x x | T H x F j + 1 x
136 98 fveq1d n = j F n x = F j x
137 136 breq2d n = j T H x F n x T H x F j x
138 137 rabbidv n = j x | T H x F n x = x | T H x F j x
139 31 rabex x | T H x F j x V
140 138 11 139 fvmpt j A j = x | T H x F j x
141 140 adantl φ j A j = x | T H x F j x
142 110 adantl φ j j + 1
143 111 fveq1d n = j + 1 F n x = F j + 1 x
144 143 breq2d n = j + 1 T H x F n x T H x F j + 1 x
145 144 rabbidv n = j + 1 x | T H x F n x = x | T H x F j + 1 x
146 31 rabex x | T H x F j + 1 x V
147 145 11 146 fvmpt j + 1 A j + 1 = x | T H x F j + 1 x
148 142 147 syl φ j A j + 1 = x | T H x F j + 1 x
149 135 141 148 3sstr4d φ j A j A j + 1
150 66 adantrr φ x 0 < H x T H x
151 57 adantrr φ x 0 < H x H x
152 63 an32s φ x n F n x
153 152 fmpttd φ x n F n x :
154 153 frnd φ x ran n F n x
155 1nn 1
156 eqid n F n x = n F n x
157 156 152 dmmptd φ x dom n F n x =
158 155 157 eleqtrrid φ x 1 dom n F n x
159 158 ne0d φ x dom n F n x
160 dm0rn0 dom n F n x = ran n F n x =
161 160 necon3bii dom n F n x ran n F n x
162 159 161 sylib φ x ran n F n x
163 153 ffnd φ x n F n x Fn
164 breq1 z = n F n x m z y n F n x m y
165 164 ralrn n F n x Fn z ran n F n x z y m n F n x m y
166 163 165 syl φ x z ran n F n x z y m n F n x m y
167 fveq2 n = m F n = F m
168 167 fveq1d n = m F n x = F m x
169 fvex F m x V
170 168 156 169 fvmpt m n F n x m = F m x
171 170 breq1d m n F n x m y F m x y
172 171 ralbiia m n F n x m y m F m x y
173 168 breq1d n = m F n x y F m x y
174 173 cbvralvw n F n x y m F m x y
175 172 174 bitr4i m n F n x m y n F n x y
176 166 175 bitrdi φ x z ran n F n x z y n F n x y
177 176 rexbidv φ x y z ran n F n x z y y n F n x y
178 5 177 mpbird φ x y z ran n F n x z y
179 154 162 178 suprcld φ x sup ran n F n x <
180 179 adantrr φ x 0 < H x sup ran n F n x <
181 24 simp3d φ T < 1
182 181 adantr φ x 0 < H x T < 1
183 25 adantr φ x 0 < H x T
184 1red φ x 0 < H x 1
185 simprr φ x 0 < H x 0 < H x
186 ltmul1 T 1 H x 0 < H x T < 1 T H x < 1 H x
187 183 184 151 185 186 syl112anc φ x 0 < H x T < 1 T H x < 1 H x
188 182 187 mpbid φ x 0 < H x T H x < 1 H x
189 151 recnd φ x 0 < H x H x
190 189 mulid2d φ x 0 < H x 1 H x = H x
191 188 190 breqtrd φ x 0 < H x T H x < H x
192 179 1 fmptd φ G :
193 192 ffnd φ G Fn
194 31 a1i φ V
195 eqidd φ y H y = H y
196 fveq2 x = y F n x = F n y
197 196 mpteq2dv x = y n F n x = n F n y
198 197 rneqd x = y ran n F n x = ran n F n y
199 198 supeq1d x = y sup ran n F n x < = sup ran n F n y <
200 ltso < Or
201 200 supex sup ran n F n y < V
202 199 1 201 fvmpt y G y = sup ran n F n y <
203 202 adantl φ y G y = sup ran n F n y <
204 51 193 194 194 33 195 203 ofrfval φ H f G y H y sup ran n F n y <
205 9 204 mpbid φ y H y sup ran n F n y <
206 fveq2 x = y H x = H y
207 206 199 breq12d x = y H x sup ran n F n x < H y sup ran n F n y <
208 207 cbvralvw x H x sup ran n F n x < y H y sup ran n F n y <
209 205 208 sylibr φ x H x sup ran n F n x <
210 209 r19.21bi φ x H x sup ran n F n x <
211 210 adantrr φ x 0 < H x H x sup ran n F n x <
212 150 151 180 191 211 ltletrd φ x 0 < H x T H x < sup ran n F n x <
213 154 adantrr φ x 0 < H x ran n F n x
214 162 adantrr φ x 0 < H x ran n F n x
215 178 adantrr φ x 0 < H x y z ran n F n x z y
216 suprlub ran n F n x ran n F n x y z ran n F n x z y T H x T H x < sup ran n F n x < w ran n F n x T H x < w
217 213 214 215 150 216 syl31anc φ x 0 < H x T H x < sup ran n F n x < w ran n F n x T H x < w
218 212 217 mpbid φ x 0 < H x w ran n F n x T H x < w
219 163 adantrr φ x 0 < H x n F n x Fn
220 breq2 w = n F n x j T H x < w T H x < n F n x j
221 220 rexrn n F n x Fn w ran n F n x T H x < w j T H x < n F n x j
222 219 221 syl φ x 0 < H x w ran n F n x T H x < w j T H x < n F n x j
223 fvex F j x V
224 136 156 223 fvmpt j n F n x j = F j x
225 224 breq2d j T H x < n F n x j T H x < F j x
226 225 rexbiia j T H x < n F n x j j T H x < F j x
227 222 226 bitrdi φ x 0 < H x w ran n F n x T H x < w j T H x < F j x
228 218 227 mpbid φ x 0 < H x j T H x < F j x
229 183 151 remulcld φ x 0 < H x T H x
230 108 adantlr φ x j F j : 0 +∞
231 simplr φ x j x
232 230 231 ffvelrnd φ x j F j x 0 +∞
233 elrege0 F j x 0 +∞ F j x 0 F j x
234 232 233 sylib φ x j F j x 0 F j x
235 234 simpld φ x j F j x
236 235 adantlrr φ x 0 < H x j F j x
237 ltle T H x F j x T H x < F j x T H x F j x
238 229 236 237 syl2an2r φ x 0 < H x j T H x < F j x T H x F j x
239 238 reximdva φ x 0 < H x j T H x < F j x j T H x F j x
240 228 239 mpd φ x 0 < H x j T H x F j x
241 240 anassrs φ x 0 < H x j T H x F j x
242 155 ne0ii
243 66 adantrr φ x H x 0 T H x
244 243 adantr φ x H x 0 j T H x
245 0red φ x H x 0 j 0
246 234 adantlrr φ x H x 0 j F j x 0 F j x
247 246 simpld φ x H x 0 j F j x
248 simplrr φ x H x 0 j H x 0
249 57 adantrr φ x H x 0 H x
250 249 adantr φ x H x 0 j H x
251 25 ad2antrr φ x H x 0 j T
252 24 simp2d φ 0 < T
253 252 ad2antrr φ x H x 0 j 0 < T
254 lemul2 H x 0 T 0 < T H x 0 T H x T 0
255 250 245 251 253 254 syl112anc φ x H x 0 j H x 0 T H x T 0
256 248 255 mpbid φ x H x 0 j T H x T 0
257 251 recnd φ x H x 0 j T
258 257 mul01d φ x H x 0 j T 0 = 0
259 256 258 breqtrd φ x H x 0 j T H x 0
260 246 simprd φ x H x 0 j 0 F j x
261 244 245 247 259 260 letrd φ x H x 0 j T H x F j x
262 261 ralrimiva φ x H x 0 j T H x F j x
263 r19.2z j T H x F j x j T H x F j x
264 242 262 263 sylancr φ x H x 0 j T H x F j x
265 264 anassrs φ x H x 0 j T H x F j x
266 0red φ x 0
267 241 265 266 57 ltlecasei φ x j T H x F j x
268 267 ralrimiva φ x j T H x F j x
269 rabid2 = x | j T H x F j x x j T H x F j x
270 268 269 sylibr φ = x | j T H x F j x
271 iunrab j x | T H x F j x = x | j T H x F j x
272 270 271 eqtr4di φ = j x | T H x F j x
273 141 iuneq2dv φ j A j = j x | T H x F j x
274 96 ffnd φ A Fn
275 fniunfv A Fn j A j = ran A
276 274 275 syl φ j A j = ran A
277 272 273 276 3eqtr2rd φ ran A =
278 eqid x if x A j H x 0 = x if x A j H x 0
279 96 149 277 8 278 itg1climres φ j 1 x if x A j H x 0 1 H
280 nnex V
281 280 mptex j T 1 x if x A j H x 0 V
282 281 a1i φ j T 1 x if x A j H x 0 V
283 fveq2 j = k A j = A k
284 283 eleq2d j = k x A j x A k
285 284 ifbid j = k if x A j H x 0 = if x A k H x 0
286 285 mpteq2dv j = k x if x A j H x 0 = x if x A k H x 0
287 286 fveq2d j = k 1 x if x A j H x 0 = 1 x if x A k H x 0
288 eqid j 1 x if x A j H x 0 = j 1 x if x A j H x 0
289 fvex 1 x if x A k H x 0 V
290 287 288 289 fvmpt k j 1 x if x A j H x 0 k = 1 x if x A k H x 0
291 290 adantl φ k j 1 x if x A j H x 0 k = 1 x if x A k H x 0
292 96 ffvelrnda φ k A k dom vol
293 eqid x if x A k H x 0 = x if x A k H x 0
294 293 i1fres H dom 1 A k dom vol x if x A k H x 0 dom 1
295 8 292 294 syl2an2r φ k x if x A k H x 0 dom 1
296 itg1cl x if x A k H x 0 dom 1 1 x if x A k H x 0
297 295 296 syl φ k 1 x if x A k H x 0
298 291 297 eqeltrd φ k j 1 x if x A j H x 0 k
299 298 recnd φ k j 1 x if x A j H x 0 k
300 287 oveq2d j = k T 1 x if x A j H x 0 = T 1 x if x A k H x 0
301 eqid j T 1 x if x A j H x 0 = j T 1 x if x A j H x 0
302 ovex T 1 x if x A k H x 0 V
303 300 301 302 fvmpt k j T 1 x if x A j H x 0 k = T 1 x if x A k H x 0
304 290 oveq2d k T j 1 x if x A j H x 0 k = T 1 x if x A k H x 0
305 303 304 eqtr4d k j T 1 x if x A j H x 0 k = T j 1 x if x A j H x 0 k
306 305 adantl φ k j T 1 x if x A j H x 0 k = T j 1 x if x A j H x 0 k
307 12 13 279 55 282 299 306 climmulc2 φ j T 1 x if x A j H x 0 T 1 H
308 icossicc 0 +∞ 0 +∞
309 fss F n : 0 +∞ 0 +∞ 0 +∞ F n : 0 +∞
310 3 308 309 sylancl φ n F n : 0 +∞
311 10 adantr φ n S
312 itg2cl F n : 0 +∞ 2 F n *
313 310 312 syl φ n 2 F n *
314 313 fmpttd φ n 2 F n : *
315 314 frnd φ ran n 2 F n *
316 fvex 2 F n V
317 316 elabrex n 2 F n x | n x = 2 F n
318 317 adantl φ n 2 F n x | n x = 2 F n
319 eqid n 2 F n = n 2 F n
320 319 rnmpt ran n 2 F n = x | n x = 2 F n
321 318 320 eleqtrrdi φ n 2 F n ran n 2 F n
322 supxrub ran n 2 F n * 2 F n ran n 2 F n 2 F n sup ran n 2 F n * <
323 315 321 322 syl2an2r φ n 2 F n sup ran n 2 F n * <
324 323 6 breqtrrdi φ n 2 F n S
325 itg2lecl F n : 0 +∞ S 2 F n S 2 F n
326 310 311 324 325 syl3anc φ n 2 F n
327 326 fmpttd φ n 2 F n :
328 310 ralrimiva φ n F n : 0 +∞
329 fveq2 n = k F n = F k
330 329 feq1d n = k F n : 0 +∞ F k : 0 +∞
331 330 cbvralvw n F n : 0 +∞ k F k : 0 +∞
332 328 331 sylib φ k F k : 0 +∞
333 peano2nn n n + 1
334 fveq2 k = n + 1 F k = F n + 1
335 334 feq1d k = n + 1 F k : 0 +∞ F n + 1 : 0 +∞
336 335 rspccva k F k : 0 +∞ n + 1 F n + 1 : 0 +∞
337 332 333 336 syl2an φ n F n + 1 : 0 +∞
338 itg2le F n : 0 +∞ F n + 1 : 0 +∞ F n f F n + 1 2 F n 2 F n + 1
339 310 337 4 338 syl3anc φ n 2 F n 2 F n + 1
340 339 ralrimiva φ n 2 F n 2 F n + 1
341 2fveq3 n = k 2 F n = 2 F k
342 fvex 2 F k V
343 341 319 342 fvmpt k n 2 F n k = 2 F k
344 peano2nn k k + 1
345 2fveq3 n = k + 1 2 F n = 2 F k + 1
346 fvex 2 F k + 1 V
347 345 319 346 fvmpt k + 1 n 2 F n k + 1 = 2 F k + 1
348 344 347 syl k n 2 F n k + 1 = 2 F k + 1
349 343 348 breq12d k n 2 F n k n 2 F n k + 1 2 F k 2 F k + 1
350 349 ralbiia k n 2 F n k n 2 F n k + 1 k 2 F k 2 F k + 1
351 fvoveq1 n = k F n + 1 = F k + 1
352 351 fveq2d n = k 2 F n + 1 = 2 F k + 1
353 341 352 breq12d n = k 2 F n 2 F n + 1 2 F k 2 F k + 1
354 353 cbvralvw n 2 F n 2 F n + 1 k 2 F k 2 F k + 1
355 350 354 bitr4i k n 2 F n k n 2 F n k + 1 n 2 F n 2 F n + 1
356 340 355 sylibr φ k n 2 F n k n 2 F n k + 1
357 356 r19.21bi φ k n 2 F n k n 2 F n k + 1
358 324 ralrimiva φ n 2 F n S
359 343 breq1d k n 2 F n k x 2 F k x
360 359 ralbiia k n 2 F n k x k 2 F k x
361 341 breq1d n = k 2 F n x 2 F k x
362 361 cbvralvw n 2 F n x k 2 F k x
363 360 362 bitr4i k n 2 F n k x n 2 F n x
364 breq2 x = S 2 F n x 2 F n S
365 364 ralbidv x = S n 2 F n x n 2 F n S
366 363 365 syl5bb x = S k n 2 F n k x n 2 F n S
367 366 rspcev S n 2 F n S x k n 2 F n k x
368 10 358 367 syl2anc φ x k n 2 F n k x
369 12 13 327 357 368 climsup φ n 2 F n sup ran n 2 F n <
370 327 frnd φ ran n 2 F n
371 319 313 dmmptd φ dom n 2 F n =
372 242 a1i φ
373 371 372 eqnetrd φ dom n 2 F n
374 dm0rn0 dom n 2 F n = ran n 2 F n =
375 374 necon3bii dom n 2 F n ran n 2 F n
376 373 375 sylib φ ran n 2 F n
377 316 319 fnmpti n 2 F n Fn
378 breq1 z = n 2 F n k z x n 2 F n k x
379 378 ralrn n 2 F n Fn z ran n 2 F n z x k n 2 F n k x
380 377 379 mp1i φ z ran n 2 F n z x k n 2 F n k x
381 380 rexbidv φ x z ran n 2 F n z x x k n 2 F n k x
382 368 381 mpbird φ x z ran n 2 F n z x
383 supxrre ran n 2 F n ran n 2 F n x z ran n 2 F n z x sup ran n 2 F n * < = sup ran n 2 F n <
384 370 376 382 383 syl3anc φ sup ran n 2 F n * < = sup ran n 2 F n <
385 6 384 syl5req φ sup ran n 2 F n < = S
386 369 385 breqtrd φ n 2 F n S
387 25 adantr φ j T
388 96 ffvelrnda φ j A j dom vol
389 278 i1fres H dom 1 A j dom vol x if x A j H x 0 dom 1
390 8 388 389 syl2an2r φ j x if x A j H x 0 dom 1
391 itg1cl x if x A j H x 0 dom 1 1 x if x A j H x 0
392 390 391 syl φ j 1 x if x A j H x 0
393 387 392 remulcld φ j T 1 x if x A j H x 0
394 393 fmpttd φ j T 1 x if x A j H x 0 :
395 394 ffvelrnda φ k j T 1 x if x A j H x 0 k
396 327 ffvelrnda φ k n 2 F n k
397 329 feq1d n = k F n : 0 +∞ F k : 0 +∞
398 397 cbvralvw n F n : 0 +∞ k F k : 0 +∞
399 104 398 sylib φ k F k : 0 +∞
400 399 r19.21bi φ k F k : 0 +∞
401 fss F k : 0 +∞ 0 +∞ 0 +∞ F k : 0 +∞
402 400 308 401 sylancl φ k F k : 0 +∞
403 31 a1i φ k V
404 25 adantr φ k T
405 404 adantr φ k x T
406 fvex H x V
407 c0ex 0 V
408 406 407 ifex if x A k H x 0 V
409 408 a1i φ k x if x A k H x 0 V
410 fconstmpt × T = x T
411 410 a1i φ k × T = x T
412 eqidd φ k x if x A k H x 0 = x if x A k H x 0
413 403 405 409 411 412 offval2 φ k × T × f x if x A k H x 0 = x T if x A k H x 0
414 ovif2 T if x A k H x 0 = if x A k T H x T 0
415 55 adantr φ k T
416 415 mul01d φ k T 0 = 0
417 416 ifeq2d φ k if x A k T H x T 0 = if x A k T H x 0
418 414 417 syl5eq φ k T if x A k H x 0 = if x A k T H x 0
419 418 mpteq2dv φ k x T if x A k H x 0 = x if x A k T H x 0
420 413 419 eqtrd φ k × T × f x if x A k H x 0 = x if x A k T H x 0
421 295 404 i1fmulc φ k × T × f x if x A k H x 0 dom 1
422 420 421 eqeltrrd φ k x if x A k T H x 0 dom 1
423 iftrue x A k if x A k T H x 0 = T H x
424 423 adantl φ k x x A k if x A k T H x 0 = T H x
425 329 fveq1d n = k F n x = F k x
426 425 breq2d n = k T H x F n x T H x F k x
427 426 rabbidv n = k x | T H x F n x = x | T H x F k x
428 31 rabex x | T H x F k x V
429 427 11 428 fvmpt k A k = x | T H x F k x
430 429 ad2antlr φ k x A k = x | T H x F k x
431 430 eleq2d φ k x x A k x x | T H x F k x
432 431 biimpa φ k x x A k x x | T H x F k x
433 rabid x x | T H x F k x x T H x F k x
434 433 simprbi x x | T H x F k x T H x F k x
435 432 434 syl φ k x x A k T H x F k x
436 424 435 eqbrtrd φ k x x A k if x A k T H x 0 F k x
437 iffalse ¬ x A k if x A k T H x 0 = 0
438 437 adantl φ k x ¬ x A k if x A k T H x 0 = 0
439 400 ffvelrnda φ k x F k x 0 +∞
440 elrege0 F k x 0 +∞ F k x 0 F k x
441 440 simprbi F k x 0 +∞ 0 F k x
442 439 441 syl φ k x 0 F k x
443 442 adantr φ k x ¬ x A k 0 F k x
444 438 443 eqbrtrd φ k x ¬ x A k if x A k T H x 0 F k x
445 436 444 pm2.61dan φ k x if x A k T H x 0 F k x
446 445 ralrimiva φ k x if x A k T H x 0 F k x
447 ovex T H x V
448 447 407 ifex if x A k T H x 0 V
449 448 a1i φ k x if x A k T H x 0 V
450 fvexd φ k x F k x V
451 eqidd φ k x if x A k T H x 0 = x if x A k T H x 0
452 400 feqmptd φ k F k = x F k x
453 403 449 450 451 452 ofrfval2 φ k x if x A k T H x 0 f F k x if x A k T H x 0 F k x
454 446 453 mpbird φ k x if x A k T H x 0 f F k
455 itg2ub F k : 0 +∞ x if x A k T H x 0 dom 1 x if x A k T H x 0 f F k 1 x if x A k T H x 0 2 F k
456 402 422 454 455 syl3anc φ k 1 x if x A k T H x 0 2 F k
457 303 adantl φ k j T 1 x if x A j H x 0 k = T 1 x if x A k H x 0
458 295 404 itg1mulc φ k 1 × T × f x if x A k H x 0 = T 1 x if x A k H x 0
459 420 fveq2d φ k 1 × T × f x if x A k H x 0 = 1 x if x A k T H x 0
460 457 458 459 3eqtr2d φ k j T 1 x if x A j H x 0 k = 1 x if x A k T H x 0
461 343 adantl φ k n 2 F n k = 2 F k
462 456 460 461 3brtr4d φ k j T 1 x if x A j H x 0 k n 2 F n k
463 12 13 307 386 395 396 462 climle φ T 1 H S