Metamath Proof Explorer


Theorem itg2monolem1

Description: Lemma for itg2mono . We show that for any constant t less than one, t x. S.1 H is less than S , and so S.1 H <_ S , which is one half of the equality in itg2mono . Consider the sequence A ( n ) = { x | t x. H <_ F ( n ) } . This is an increasing sequence of measurable sets whose union is RR , and so ` H |`A ( n ) has an integral which equals S.1 H in the limit, by itg1climres . Then by taking the limit in ` ( t x. H ) |`A ( n ) <_ F ( n ) , we get t x. S.1 H <_ S as desired. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 G=xsuprannFnx<
itg2mono.2 φnFnMblFn
itg2mono.3 φnFn:0+∞
itg2mono.4 φnFnfFn+1
itg2mono.5 φxynFnxy
itg2mono.6 S=suprann2Fn*<
itg2mono.7 φT01
itg2mono.8 φHdom1
itg2mono.9 φHfG
itg2mono.10 φS
itg2mono.11 A=nx|THxFnx
Assertion itg2monolem1 φT1HS

Proof

Step Hyp Ref Expression
1 itg2mono.1 G=xsuprannFnx<
2 itg2mono.2 φnFnMblFn
3 itg2mono.3 φnFn:0+∞
4 itg2mono.4 φnFnfFn+1
5 itg2mono.5 φxynFnxy
6 itg2mono.6 S=suprann2Fn*<
7 itg2mono.7 φT01
8 itg2mono.8 φHdom1
9 itg2mono.9 φHfG
10 itg2mono.10 φS
11 itg2mono.11 A=nx|THxFnx
12 nnuz =1
13 1zzd φ1
14 simpr φnxx
15 readdcl xyx+y
16 15 adantl φnxyx+y
17 rge0ssre 0+∞
18 fss Fn:0+∞0+∞Fn:
19 3 17 18 sylancl φnFn:
20 0xr 0*
21 1xr 1*
22 elioo2 0*1*T01T0<TT<1
23 20 21 22 mp2an T01T0<TT<1
24 7 23 sylib φT0<TT<1
25 24 simp1d φT
26 25 renegcld φT
27 8 26 i1fmulc φ×T×fHdom1
28 27 adantr φn×T×fHdom1
29 i1ff ×T×fHdom1×T×fH:
30 28 29 syl φn×T×fH:
31 reex V
32 31 a1i φnV
33 inidm =
34 16 19 30 32 32 33 off φnFn+f×T×fH:
35 34 adantr φnxFn+f×T×fH:
36 35 ffnd φnxFn+f×T×fHFn
37 elpreima Fn+f×T×fHFnxFn+f×T×fH-1−∞0xFn+f×T×fHx−∞0
38 36 37 syl φnxxFn+f×T×fH-1−∞0xFn+f×T×fHx−∞0
39 14 38 mpbirand φnxxFn+f×T×fH-1−∞0Fn+f×T×fHx−∞0
40 elioomnf 0*Fn+f×T×fHx−∞0Fn+f×T×fHxFn+f×T×fHx<0
41 20 40 ax-mp Fn+f×T×fHx−∞0Fn+f×T×fHxFn+f×T×fHx<0
42 34 ffvelcdmda φnxFn+f×T×fHx
43 42 biantrurd φnxFn+f×T×fHx<0Fn+f×T×fHxFn+f×T×fHx<0
44 41 43 bitr4id φnxFn+f×T×fHx−∞0Fn+f×T×fHx<0
45 3 ffnd φnFnFn
46 30 ffnd φn×T×fHFn
47 eqidd φnxFnx=Fnx
48 26 adantr φnT
49 i1ff Hdom1H:
50 8 49 syl φH:
51 50 ffnd φHFn
52 51 adantr φnHFn
53 eqidd φnxHx=Hx
54 32 48 52 53 ofc1 φnx×T×fHx=THx
55 25 recnd φT
56 55 ad2antrr φnxT
57 50 ffvelcdmda φxHx
58 57 adantlr φnxHx
59 58 recnd φnxHx
60 56 59 mulneg1d φnxTHx=THx
61 54 60 eqtrd φnx×T×fHx=THx
62 45 46 32 32 33 47 61 ofval φnxFn+f×T×fHx=Fnx+THx
63 19 ffvelcdmda φnxFnx
64 63 recnd φnxFnx
65 25 adantr φxT
66 65 57 remulcld φxTHx
67 66 adantlr φnxTHx
68 67 recnd φnxTHx
69 64 68 negsubd φnxFnx+THx=FnxTHx
70 62 69 eqtrd φnxFn+f×T×fHx=FnxTHx
71 70 breq1d φnxFn+f×T×fHx<0FnxTHx<0
72 0red φnx0
73 63 67 72 ltsubaddd φnxFnxTHx<0Fnx<0+THx
74 68 addlidd φnx0+THx=THx
75 74 breq2d φnxFnx<0+THxFnx<THx
76 71 73 75 3bitrd φnxFn+f×T×fHx<0Fnx<THx
77 39 44 76 3bitrd φnxxFn+f×T×fH-1−∞0Fnx<THx
78 77 notbid φnx¬xFn+f×T×fH-1−∞0¬Fnx<THx
79 eldif xFn+f×T×fH-1−∞0x¬xFn+f×T×fH-1−∞0
80 79 baib xxFn+f×T×fH-1−∞0¬xFn+f×T×fH-1−∞0
81 80 adantl φnxxFn+f×T×fH-1−∞0¬xFn+f×T×fH-1−∞0
82 67 63 lenltd φnxTHxFnx¬Fnx<THx
83 78 81 82 3bitr4d φnxxFn+f×T×fH-1−∞0THxFnx
84 83 rabbi2dva φnFn+f×T×fH-1−∞0=x|THxFnx
85 rembl domvol
86 i1fmbf ×T×fHdom1×T×fHMblFn
87 28 86 syl φn×T×fHMblFn
88 2 87 mbfadd φnFn+f×T×fHMblFn
89 mbfima Fn+f×T×fHMblFnFn+f×T×fH:Fn+f×T×fH-1−∞0domvol
90 88 34 89 syl2anc φnFn+f×T×fH-1−∞0domvol
91 cmmbl Fn+f×T×fH-1−∞0domvolFn+f×T×fH-1−∞0domvol
92 90 91 syl φnFn+f×T×fH-1−∞0domvol
93 inmbl domvolFn+f×T×fH-1−∞0domvolFn+f×T×fH-1−∞0domvol
94 85 92 93 sylancr φnFn+f×T×fH-1−∞0domvol
95 84 94 eqeltrrd φnx|THxFnxdomvol
96 95 11 fmptd φA:domvol
97 4 ralrimiva φnFnfFn+1
98 fveq2 n=jFn=Fj
99 fvoveq1 n=jFn+1=Fj+1
100 98 99 breq12d n=jFnfFn+1FjfFj+1
101 100 cbvralvw nFnfFn+1jFjfFj+1
102 97 101 sylib φjFjfFj+1
103 102 r19.21bi φjFjfFj+1
104 3 ralrimiva φnFn:0+∞
105 98 feq1d n=jFn:0+∞Fj:0+∞
106 105 cbvralvw nFn:0+∞jFj:0+∞
107 104 106 sylib φjFj:0+∞
108 107 r19.21bi φjFj:0+∞
109 108 ffnd φjFjFn
110 peano2nn jj+1
111 fveq2 n=j+1Fn=Fj+1
112 111 feq1d n=j+1Fn:0+∞Fj+1:0+∞
113 112 rspccva nFn:0+∞j+1Fj+1:0+∞
114 104 110 113 syl2an φjFj+1:0+∞
115 114 ffnd φjFj+1Fn
116 31 a1i φjV
117 eqidd φjxFjx=Fjx
118 eqidd φjxFj+1x=Fj+1x
119 109 115 116 116 33 117 118 ofrfval φjFjfFj+1xFjxFj+1x
120 103 119 mpbid φjxFjxFj+1x
121 120 r19.21bi φjxFjxFj+1x
122 25 ad2antrr φjxT
123 50 adantr φjH:
124 123 ffvelcdmda φjxHx
125 122 124 remulcld φjxTHx
126 fss Fj:0+∞0+∞Fj:
127 108 17 126 sylancl φjFj:
128 127 ffvelcdmda φjxFjx
129 fss Fj+1:0+∞0+∞Fj+1:
130 114 17 129 sylancl φjFj+1:
131 130 ffvelcdmda φjxFj+1x
132 letr THxFjxFj+1xTHxFjxFjxFj+1xTHxFj+1x
133 125 128 131 132 syl3anc φjxTHxFjxFjxFj+1xTHxFj+1x
134 121 133 mpan2d φjxTHxFjxTHxFj+1x
135 134 ss2rabdv φjx|THxFjxx|THxFj+1x
136 98 fveq1d n=jFnx=Fjx
137 136 breq2d n=jTHxFnxTHxFjx
138 137 rabbidv n=jx|THxFnx=x|THxFjx
139 31 rabex x|THxFjxV
140 138 11 139 fvmpt jAj=x|THxFjx
141 140 adantl φjAj=x|THxFjx
142 110 adantl φjj+1
143 111 fveq1d n=j+1Fnx=Fj+1x
144 143 breq2d n=j+1THxFnxTHxFj+1x
145 144 rabbidv n=j+1x|THxFnx=x|THxFj+1x
146 31 rabex x|THxFj+1xV
147 145 11 146 fvmpt j+1Aj+1=x|THxFj+1x
148 142 147 syl φjAj+1=x|THxFj+1x
149 135 141 148 3sstr4d φjAjAj+1
150 66 adantrr φx0<HxTHx
151 57 adantrr φx0<HxHx
152 63 an32s φxnFnx
153 152 fmpttd φxnFnx:
154 153 frnd φxrannFnx
155 1nn 1
156 eqid nFnx=nFnx
157 156 152 dmmptd φxdomnFnx=
158 155 157 eleqtrrid φx1domnFnx
159 158 ne0d φxdomnFnx
160 dm0rn0 domnFnx=rannFnx=
161 160 necon3bii domnFnxrannFnx
162 159 161 sylib φxrannFnx
163 153 ffnd φxnFnxFn
164 breq1 z=nFnxmzynFnxmy
165 164 ralrn nFnxFnzrannFnxzymnFnxmy
166 163 165 syl φxzrannFnxzymnFnxmy
167 fveq2 n=mFn=Fm
168 167 fveq1d n=mFnx=Fmx
169 fvex FmxV
170 168 156 169 fvmpt mnFnxm=Fmx
171 170 breq1d mnFnxmyFmxy
172 171 ralbiia mnFnxmymFmxy
173 168 breq1d n=mFnxyFmxy
174 173 cbvralvw nFnxymFmxy
175 172 174 bitr4i mnFnxmynFnxy
176 166 175 bitrdi φxzrannFnxzynFnxy
177 176 rexbidv φxyzrannFnxzyynFnxy
178 5 177 mpbird φxyzrannFnxzy
179 154 162 178 suprcld φxsuprannFnx<
180 179 adantrr φx0<HxsuprannFnx<
181 24 simp3d φT<1
182 181 adantr φx0<HxT<1
183 25 adantr φx0<HxT
184 1red φx0<Hx1
185 simprr φx0<Hx0<Hx
186 ltmul1 T1Hx0<HxT<1THx<1Hx
187 183 184 151 185 186 syl112anc φx0<HxT<1THx<1Hx
188 182 187 mpbid φx0<HxTHx<1Hx
189 151 recnd φx0<HxHx
190 189 mullidd φx0<Hx1Hx=Hx
191 188 190 breqtrd φx0<HxTHx<Hx
192 179 1 fmptd φG:
193 192 ffnd φGFn
194 31 a1i φV
195 eqidd φyHy=Hy
196 fveq2 x=yFnx=Fny
197 196 mpteq2dv x=ynFnx=nFny
198 197 rneqd x=yrannFnx=rannFny
199 198 supeq1d x=ysuprannFnx<=suprannFny<
200 ltso <Or
201 200 supex suprannFny<V
202 199 1 201 fvmpt yGy=suprannFny<
203 202 adantl φyGy=suprannFny<
204 51 193 194 194 33 195 203 ofrfval φHfGyHysuprannFny<
205 9 204 mpbid φyHysuprannFny<
206 fveq2 x=yHx=Hy
207 206 199 breq12d x=yHxsuprannFnx<HysuprannFny<
208 207 cbvralvw xHxsuprannFnx<yHysuprannFny<
209 205 208 sylibr φxHxsuprannFnx<
210 209 r19.21bi φxHxsuprannFnx<
211 210 adantrr φx0<HxHxsuprannFnx<
212 150 151 180 191 211 ltletrd φx0<HxTHx<suprannFnx<
213 154 adantrr φx0<HxrannFnx
214 162 adantrr φx0<HxrannFnx
215 178 adantrr φx0<HxyzrannFnxzy
216 suprlub rannFnxrannFnxyzrannFnxzyTHxTHx<suprannFnx<wrannFnxTHx<w
217 213 214 215 150 216 syl31anc φx0<HxTHx<suprannFnx<wrannFnxTHx<w
218 212 217 mpbid φx0<HxwrannFnxTHx<w
219 163 adantrr φx0<HxnFnxFn
220 breq2 w=nFnxjTHx<wTHx<nFnxj
221 220 rexrn nFnxFnwrannFnxTHx<wjTHx<nFnxj
222 219 221 syl φx0<HxwrannFnxTHx<wjTHx<nFnxj
223 fvex FjxV
224 136 156 223 fvmpt jnFnxj=Fjx
225 224 breq2d jTHx<nFnxjTHx<Fjx
226 225 rexbiia jTHx<nFnxjjTHx<Fjx
227 222 226 bitrdi φx0<HxwrannFnxTHx<wjTHx<Fjx
228 218 227 mpbid φx0<HxjTHx<Fjx
229 183 151 remulcld φx0<HxTHx
230 108 adantlr φxjFj:0+∞
231 simplr φxjx
232 230 231 ffvelcdmd φxjFjx0+∞
233 elrege0 Fjx0+∞Fjx0Fjx
234 232 233 sylib φxjFjx0Fjx
235 234 simpld φxjFjx
236 235 adantlrr φx0<HxjFjx
237 ltle THxFjxTHx<FjxTHxFjx
238 229 236 237 syl2an2r φx0<HxjTHx<FjxTHxFjx
239 238 reximdva φx0<HxjTHx<FjxjTHxFjx
240 228 239 mpd φx0<HxjTHxFjx
241 240 anassrs φx0<HxjTHxFjx
242 155 ne0ii
243 66 adantrr φxHx0THx
244 243 adantr φxHx0jTHx
245 0red φxHx0j0
246 234 adantlrr φxHx0jFjx0Fjx
247 246 simpld φxHx0jFjx
248 simplrr φxHx0jHx0
249 57 adantrr φxHx0Hx
250 249 adantr φxHx0jHx
251 25 ad2antrr φxHx0jT
252 24 simp2d φ0<T
253 252 ad2antrr φxHx0j0<T
254 lemul2 Hx0T0<THx0THxT0
255 250 245 251 253 254 syl112anc φxHx0jHx0THxT0
256 248 255 mpbid φxHx0jTHxT0
257 251 recnd φxHx0jT
258 257 mul01d φxHx0jT0=0
259 256 258 breqtrd φxHx0jTHx0
260 246 simprd φxHx0j0Fjx
261 244 245 247 259 260 letrd φxHx0jTHxFjx
262 261 ralrimiva φxHx0jTHxFjx
263 r19.2z jTHxFjxjTHxFjx
264 242 262 263 sylancr φxHx0jTHxFjx
265 264 anassrs φxHx0jTHxFjx
266 0red φx0
267 241 265 266 57 ltlecasei φxjTHxFjx
268 267 ralrimiva φxjTHxFjx
269 rabid2 =x|jTHxFjxxjTHxFjx
270 268 269 sylibr φ=x|jTHxFjx
271 iunrab jx|THxFjx=x|jTHxFjx
272 270 271 eqtr4di φ=jx|THxFjx
273 141 iuneq2dv φjAj=jx|THxFjx
274 96 ffnd φAFn
275 fniunfv AFnjAj=ranA
276 274 275 syl φjAj=ranA
277 272 273 276 3eqtr2rd φranA=
278 eqid xifxAjHx0=xifxAjHx0
279 96 149 277 8 278 itg1climres φj1xifxAjHx01H
280 nnex V
281 280 mptex jT1xifxAjHx0V
282 281 a1i φjT1xifxAjHx0V
283 fveq2 j=kAj=Ak
284 283 eleq2d j=kxAjxAk
285 284 ifbid j=kifxAjHx0=ifxAkHx0
286 285 mpteq2dv j=kxifxAjHx0=xifxAkHx0
287 286 fveq2d j=k1xifxAjHx0=1xifxAkHx0
288 eqid j1xifxAjHx0=j1xifxAjHx0
289 fvex 1xifxAkHx0V
290 287 288 289 fvmpt kj1xifxAjHx0k=1xifxAkHx0
291 290 adantl φkj1xifxAjHx0k=1xifxAkHx0
292 96 ffvelcdmda φkAkdomvol
293 eqid xifxAkHx0=xifxAkHx0
294 293 i1fres Hdom1AkdomvolxifxAkHx0dom1
295 8 292 294 syl2an2r φkxifxAkHx0dom1
296 itg1cl xifxAkHx0dom11xifxAkHx0
297 295 296 syl φk1xifxAkHx0
298 291 297 eqeltrd φkj1xifxAjHx0k
299 298 recnd φkj1xifxAjHx0k
300 287 oveq2d j=kT1xifxAjHx0=T1xifxAkHx0
301 eqid jT1xifxAjHx0=jT1xifxAjHx0
302 ovex T1xifxAkHx0V
303 300 301 302 fvmpt kjT1xifxAjHx0k=T1xifxAkHx0
304 290 oveq2d kTj1xifxAjHx0k=T1xifxAkHx0
305 303 304 eqtr4d kjT1xifxAjHx0k=Tj1xifxAjHx0k
306 305 adantl φkjT1xifxAjHx0k=Tj1xifxAjHx0k
307 12 13 279 55 282 299 306 climmulc2 φjT1xifxAjHx0T1H
308 icossicc 0+∞0+∞
309 fss Fn:0+∞0+∞0+∞Fn:0+∞
310 3 308 309 sylancl φnFn:0+∞
311 10 adantr φnS
312 itg2cl Fn:0+∞2Fn*
313 310 312 syl φn2Fn*
314 313 fmpttd φn2Fn:*
315 314 frnd φrann2Fn*
316 fvex 2FnV
317 316 elabrex n2Fnx|nx=2Fn
318 317 adantl φn2Fnx|nx=2Fn
319 eqid n2Fn=n2Fn
320 319 rnmpt rann2Fn=x|nx=2Fn
321 318 320 eleqtrrdi φn2Fnrann2Fn
322 supxrub rann2Fn*2Fnrann2Fn2Fnsuprann2Fn*<
323 315 321 322 syl2an2r φn2Fnsuprann2Fn*<
324 323 6 breqtrrdi φn2FnS
325 itg2lecl Fn:0+∞S2FnS2Fn
326 310 311 324 325 syl3anc φn2Fn
327 326 fmpttd φn2Fn:
328 310 ralrimiva φnFn:0+∞
329 fveq2 n=kFn=Fk
330 329 feq1d n=kFn:0+∞Fk:0+∞
331 330 cbvralvw nFn:0+∞kFk:0+∞
332 328 331 sylib φkFk:0+∞
333 peano2nn nn+1
334 fveq2 k=n+1Fk=Fn+1
335 334 feq1d k=n+1Fk:0+∞Fn+1:0+∞
336 335 rspccva kFk:0+∞n+1Fn+1:0+∞
337 332 333 336 syl2an φnFn+1:0+∞
338 itg2le Fn:0+∞Fn+1:0+∞FnfFn+12Fn2Fn+1
339 310 337 4 338 syl3anc φn2Fn2Fn+1
340 339 ralrimiva φn2Fn2Fn+1
341 2fveq3 n=k2Fn=2Fk
342 fvex 2FkV
343 341 319 342 fvmpt kn2Fnk=2Fk
344 peano2nn kk+1
345 2fveq3 n=k+12Fn=2Fk+1
346 fvex 2Fk+1V
347 345 319 346 fvmpt k+1n2Fnk+1=2Fk+1
348 344 347 syl kn2Fnk+1=2Fk+1
349 343 348 breq12d kn2Fnkn2Fnk+12Fk2Fk+1
350 349 ralbiia kn2Fnkn2Fnk+1k2Fk2Fk+1
351 fvoveq1 n=kFn+1=Fk+1
352 351 fveq2d n=k2Fn+1=2Fk+1
353 341 352 breq12d n=k2Fn2Fn+12Fk2Fk+1
354 353 cbvralvw n2Fn2Fn+1k2Fk2Fk+1
355 350 354 bitr4i kn2Fnkn2Fnk+1n2Fn2Fn+1
356 340 355 sylibr φkn2Fnkn2Fnk+1
357 356 r19.21bi φkn2Fnkn2Fnk+1
358 324 ralrimiva φn2FnS
359 343 breq1d kn2Fnkx2Fkx
360 359 ralbiia kn2Fnkxk2Fkx
361 341 breq1d n=k2Fnx2Fkx
362 361 cbvralvw n2Fnxk2Fkx
363 360 362 bitr4i kn2Fnkxn2Fnx
364 breq2 x=S2Fnx2FnS
365 364 ralbidv x=Sn2Fnxn2FnS
366 363 365 bitrid x=Skn2Fnkxn2FnS
367 366 rspcev Sn2FnSxkn2Fnkx
368 10 358 367 syl2anc φxkn2Fnkx
369 12 13 327 357 368 climsup φn2Fnsuprann2Fn<
370 327 frnd φrann2Fn
371 319 313 dmmptd φdomn2Fn=
372 242 a1i φ
373 371 372 eqnetrd φdomn2Fn
374 dm0rn0 domn2Fn=rann2Fn=
375 374 necon3bii domn2Fnrann2Fn
376 373 375 sylib φrann2Fn
377 316 319 fnmpti n2FnFn
378 breq1 z=n2Fnkzxn2Fnkx
379 378 ralrn n2FnFnzrann2Fnzxkn2Fnkx
380 377 379 mp1i φzrann2Fnzxkn2Fnkx
381 380 rexbidv φxzrann2Fnzxxkn2Fnkx
382 368 381 mpbird φxzrann2Fnzx
383 supxrre rann2Fnrann2Fnxzrann2Fnzxsuprann2Fn*<=suprann2Fn<
384 370 376 382 383 syl3anc φsuprann2Fn*<=suprann2Fn<
385 6 384 eqtr2id φsuprann2Fn<=S
386 369 385 breqtrd φn2FnS
387 25 adantr φjT
388 96 ffvelcdmda φjAjdomvol
389 278 i1fres Hdom1AjdomvolxifxAjHx0dom1
390 8 388 389 syl2an2r φjxifxAjHx0dom1
391 itg1cl xifxAjHx0dom11xifxAjHx0
392 390 391 syl φj1xifxAjHx0
393 387 392 remulcld φjT1xifxAjHx0
394 393 fmpttd φjT1xifxAjHx0:
395 394 ffvelcdmda φkjT1xifxAjHx0k
396 327 ffvelcdmda φkn2Fnk
397 329 feq1d n=kFn:0+∞Fk:0+∞
398 397 cbvralvw nFn:0+∞kFk:0+∞
399 104 398 sylib φkFk:0+∞
400 399 r19.21bi φkFk:0+∞
401 fss Fk:0+∞0+∞0+∞Fk:0+∞
402 400 308 401 sylancl φkFk:0+∞
403 31 a1i φkV
404 25 adantr φkT
405 404 adantr φkxT
406 fvex HxV
407 c0ex 0V
408 406 407 ifex ifxAkHx0V
409 408 a1i φkxifxAkHx0V
410 fconstmpt ×T=xT
411 410 a1i φk×T=xT
412 eqidd φkxifxAkHx0=xifxAkHx0
413 403 405 409 411 412 offval2 φk×T×fxifxAkHx0=xTifxAkHx0
414 ovif2 TifxAkHx0=ifxAkTHxT0
415 55 adantr φkT
416 415 mul01d φkT0=0
417 416 ifeq2d φkifxAkTHxT0=ifxAkTHx0
418 414 417 eqtrid φkTifxAkHx0=ifxAkTHx0
419 418 mpteq2dv φkxTifxAkHx0=xifxAkTHx0
420 413 419 eqtrd φk×T×fxifxAkHx0=xifxAkTHx0
421 295 404 i1fmulc φk×T×fxifxAkHx0dom1
422 420 421 eqeltrrd φkxifxAkTHx0dom1
423 iftrue xAkifxAkTHx0=THx
424 423 adantl φkxxAkifxAkTHx0=THx
425 329 fveq1d n=kFnx=Fkx
426 425 breq2d n=kTHxFnxTHxFkx
427 426 rabbidv n=kx|THxFnx=x|THxFkx
428 31 rabex x|THxFkxV
429 427 11 428 fvmpt kAk=x|THxFkx
430 429 ad2antlr φkxAk=x|THxFkx
431 430 eleq2d φkxxAkxx|THxFkx
432 431 biimpa φkxxAkxx|THxFkx
433 rabid xx|THxFkxxTHxFkx
434 433 simprbi xx|THxFkxTHxFkx
435 432 434 syl φkxxAkTHxFkx
436 424 435 eqbrtrd φkxxAkifxAkTHx0Fkx
437 iffalse ¬xAkifxAkTHx0=0
438 437 adantl φkx¬xAkifxAkTHx0=0
439 400 ffvelcdmda φkxFkx0+∞
440 elrege0 Fkx0+∞Fkx0Fkx
441 440 simprbi Fkx0+∞0Fkx
442 439 441 syl φkx0Fkx
443 442 adantr φkx¬xAk0Fkx
444 438 443 eqbrtrd φkx¬xAkifxAkTHx0Fkx
445 436 444 pm2.61dan φkxifxAkTHx0Fkx
446 445 ralrimiva φkxifxAkTHx0Fkx
447 ovex THxV
448 447 407 ifex ifxAkTHx0V
449 448 a1i φkxifxAkTHx0V
450 fvexd φkxFkxV
451 eqidd φkxifxAkTHx0=xifxAkTHx0
452 400 feqmptd φkFk=xFkx
453 403 449 450 451 452 ofrfval2 φkxifxAkTHx0fFkxifxAkTHx0Fkx
454 446 453 mpbird φkxifxAkTHx0fFk
455 itg2ub Fk:0+∞xifxAkTHx0dom1xifxAkTHx0fFk1xifxAkTHx02Fk
456 402 422 454 455 syl3anc φk1xifxAkTHx02Fk
457 303 adantl φkjT1xifxAjHx0k=T1xifxAkHx0
458 295 404 itg1mulc φk1×T×fxifxAkHx0=T1xifxAkHx0
459 420 fveq2d φk1×T×fxifxAkHx0=1xifxAkTHx0
460 457 458 459 3eqtr2d φkjT1xifxAjHx0k=1xifxAkTHx0
461 343 adantl φkn2Fnk=2Fk
462 456 460 461 3brtr4d φkjT1xifxAjHx0kn2Fnk
463 12 13 307 386 395 396 462 climle φT1HS