| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mono.1 |
|- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 2 |
|
itg2mono.2 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
| 3 |
|
itg2mono.3 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
| 4 |
|
itg2mono.4 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
| 5 |
|
itg2mono.5 |
|- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
| 6 |
|
itg2mono.6 |
|- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
| 7 |
|
itg2mono.7 |
|- ( ph -> T e. ( 0 (,) 1 ) ) |
| 8 |
|
itg2mono.8 |
|- ( ph -> H e. dom S.1 ) |
| 9 |
|
itg2mono.9 |
|- ( ph -> H oR <_ G ) |
| 10 |
|
itg2mono.10 |
|- ( ph -> S e. RR ) |
| 11 |
|
itg2mono.11 |
|- A = ( n e. NN |-> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) |
| 12 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 13 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) |
| 15 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
| 16 |
15
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 17 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 18 |
|
fss |
|- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` n ) : RR --> RR ) |
| 19 |
3 17 18
|
sylancl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> RR ) |
| 20 |
|
0xr |
|- 0 e. RR* |
| 21 |
|
1xr |
|- 1 e. RR* |
| 22 |
|
elioo2 |
|- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( T e. ( 0 (,) 1 ) <-> ( T e. RR /\ 0 < T /\ T < 1 ) ) ) |
| 23 |
20 21 22
|
mp2an |
|- ( T e. ( 0 (,) 1 ) <-> ( T e. RR /\ 0 < T /\ T < 1 ) ) |
| 24 |
7 23
|
sylib |
|- ( ph -> ( T e. RR /\ 0 < T /\ T < 1 ) ) |
| 25 |
24
|
simp1d |
|- ( ph -> T e. RR ) |
| 26 |
25
|
renegcld |
|- ( ph -> -u T e. RR ) |
| 27 |
8 26
|
i1fmulc |
|- ( ph -> ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 ) |
| 29 |
|
i1ff |
|- ( ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 -> ( ( RR X. { -u T } ) oF x. H ) : RR --> RR ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) : RR --> RR ) |
| 31 |
|
reex |
|- RR e. _V |
| 32 |
31
|
a1i |
|- ( ( ph /\ n e. NN ) -> RR e. _V ) |
| 33 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 34 |
16 19 30 32 32 33
|
off |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) |
| 35 |
34
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) |
| 36 |
35
|
ffnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) Fn RR ) |
| 37 |
|
elpreima |
|- ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) Fn RR -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( x e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) ) |
| 38 |
36 37
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( x e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) ) |
| 39 |
14 38
|
mpbirand |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) |
| 40 |
|
elioomnf |
|- ( 0 e. RR* -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) ) |
| 41 |
20 40
|
ax-mp |
|- ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) |
| 42 |
34
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR ) |
| 43 |
42
|
biantrurd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) ) |
| 44 |
41 43
|
bitr4id |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) |
| 45 |
3
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) Fn RR ) |
| 46 |
30
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) Fn RR ) |
| 47 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` x ) ) |
| 48 |
26
|
adantr |
|- ( ( ph /\ n e. NN ) -> -u T e. RR ) |
| 49 |
|
i1ff |
|- ( H e. dom S.1 -> H : RR --> RR ) |
| 50 |
8 49
|
syl |
|- ( ph -> H : RR --> RR ) |
| 51 |
50
|
ffnd |
|- ( ph -> H Fn RR ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ n e. NN ) -> H Fn RR ) |
| 53 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) = ( H ` x ) ) |
| 54 |
32 48 52 53
|
ofc1 |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( RR X. { -u T } ) oF x. H ) ` x ) = ( -u T x. ( H ` x ) ) ) |
| 55 |
25
|
recnd |
|- ( ph -> T e. CC ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> T e. CC ) |
| 57 |
50
|
ffvelcdmda |
|- ( ( ph /\ x e. RR ) -> ( H ` x ) e. RR ) |
| 58 |
57
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) e. RR ) |
| 59 |
58
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) e. CC ) |
| 60 |
56 59
|
mulneg1d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( -u T x. ( H ` x ) ) = -u ( T x. ( H ` x ) ) ) |
| 61 |
54 60
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( RR X. { -u T } ) oF x. H ) ` x ) = -u ( T x. ( H ` x ) ) ) |
| 62 |
45 46 32 32 33 47 61
|
ofval |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) = ( ( ( F ` n ) ` x ) + -u ( T x. ( H ` x ) ) ) ) |
| 63 |
19
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. RR ) |
| 64 |
63
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. CC ) |
| 65 |
25
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. RR ) |
| 66 |
65 57
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) |
| 67 |
66
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) |
| 68 |
67
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. CC ) |
| 69 |
64 68
|
negsubd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) ` x ) + -u ( T x. ( H ` x ) ) ) = ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) ) |
| 70 |
62 69
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) = ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) ) |
| 71 |
70
|
breq1d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) < 0 ) ) |
| 72 |
|
0red |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. RR ) |
| 73 |
63 67 72
|
ltsubaddd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) < 0 <-> ( ( F ` n ) ` x ) < ( 0 + ( T x. ( H ` x ) ) ) ) ) |
| 74 |
68
|
addlidd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( 0 + ( T x. ( H ` x ) ) ) = ( T x. ( H ` x ) ) ) |
| 75 |
74
|
breq2d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) ` x ) < ( 0 + ( T x. ( H ` x ) ) ) <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 76 |
71 73 75
|
3bitrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 77 |
39 44 76
|
3bitrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 78 |
77
|
notbid |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> -. ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 79 |
|
eldif |
|- ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> ( x e. RR /\ -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) |
| 80 |
79
|
baib |
|- ( x e. RR -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) |
| 82 |
67 63
|
lenltd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> -. ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 83 |
78 81 82
|
3bitr4d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) ) ) |
| 84 |
83
|
rabbi2dva |
|- ( ( ph /\ n e. NN ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) |
| 85 |
|
rembl |
|- RR e. dom vol |
| 86 |
|
i1fmbf |
|- ( ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 -> ( ( RR X. { -u T } ) oF x. H ) e. MblFn ) |
| 87 |
28 86
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) e. MblFn ) |
| 88 |
2 87
|
mbfadd |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) e. MblFn ) |
| 89 |
|
mbfima |
|- ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) e. MblFn /\ ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) -> ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol ) |
| 90 |
88 34 89
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol ) |
| 91 |
|
cmmbl |
|- ( ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol -> ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) |
| 92 |
90 91
|
syl |
|- ( ( ph /\ n e. NN ) -> ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) |
| 93 |
|
inmbl |
|- ( ( RR e. dom vol /\ ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) e. dom vol ) |
| 94 |
85 92 93
|
sylancr |
|- ( ( ph /\ n e. NN ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) e. dom vol ) |
| 95 |
84 94
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } e. dom vol ) |
| 96 |
95 11
|
fmptd |
|- ( ph -> A : NN --> dom vol ) |
| 97 |
4
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
| 98 |
|
fveq2 |
|- ( n = j -> ( F ` n ) = ( F ` j ) ) |
| 99 |
|
fvoveq1 |
|- ( n = j -> ( F ` ( n + 1 ) ) = ( F ` ( j + 1 ) ) ) |
| 100 |
98 99
|
breq12d |
|- ( n = j -> ( ( F ` n ) oR <_ ( F ` ( n + 1 ) ) <-> ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) ) |
| 101 |
100
|
cbvralvw |
|- ( A. n e. NN ( F ` n ) oR <_ ( F ` ( n + 1 ) ) <-> A. j e. NN ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) |
| 102 |
97 101
|
sylib |
|- ( ph -> A. j e. NN ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) |
| 103 |
102
|
r19.21bi |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) |
| 104 |
3
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
| 105 |
98
|
feq1d |
|- ( n = j -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` j ) : RR --> ( 0 [,) +oo ) ) ) |
| 106 |
105
|
cbvralvw |
|- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. j e. NN ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 107 |
104 106
|
sylib |
|- ( ph -> A. j e. NN ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 108 |
107
|
r19.21bi |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 109 |
108
|
ffnd |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) Fn RR ) |
| 110 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
| 111 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( F ` n ) = ( F ` ( j + 1 ) ) ) |
| 112 |
111
|
feq1d |
|- ( n = ( j + 1 ) -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) ) |
| 113 |
112
|
rspccva |
|- ( ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( j + 1 ) e. NN ) -> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) |
| 114 |
104 110 113
|
syl2an |
|- ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) |
| 115 |
114
|
ffnd |
|- ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) Fn RR ) |
| 116 |
31
|
a1i |
|- ( ( ph /\ j e. NN ) -> RR e. _V ) |
| 117 |
|
eqidd |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) = ( ( F ` j ) ` x ) ) |
| 118 |
|
eqidd |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` ( j + 1 ) ) ` x ) = ( ( F ` ( j + 1 ) ) ` x ) ) |
| 119 |
109 115 116 116 33 117 118
|
ofrfval |
|- ( ( ph /\ j e. NN ) -> ( ( F ` j ) oR <_ ( F ` ( j + 1 ) ) <-> A. x e. RR ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 120 |
103 119
|
mpbid |
|- ( ( ph /\ j e. NN ) -> A. x e. RR ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) |
| 121 |
120
|
r19.21bi |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) |
| 122 |
25
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> T e. RR ) |
| 123 |
50
|
adantr |
|- ( ( ph /\ j e. NN ) -> H : RR --> RR ) |
| 124 |
123
|
ffvelcdmda |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( H ` x ) e. RR ) |
| 125 |
122 124
|
remulcld |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) |
| 126 |
|
fss |
|- ( ( ( F ` j ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` j ) : RR --> RR ) |
| 127 |
108 17 126
|
sylancl |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) : RR --> RR ) |
| 128 |
127
|
ffvelcdmda |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) e. RR ) |
| 129 |
|
fss |
|- ( ( ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` ( j + 1 ) ) : RR --> RR ) |
| 130 |
114 17 129
|
sylancl |
|- ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) : RR --> RR ) |
| 131 |
130
|
ffvelcdmda |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` ( j + 1 ) ) ` x ) e. RR ) |
| 132 |
|
letr |
|- ( ( ( T x. ( H ` x ) ) e. RR /\ ( ( F ` j ) ` x ) e. RR /\ ( ( F ` ( j + 1 ) ) ` x ) e. RR ) -> ( ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) /\ ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 133 |
125 128 131 132
|
syl3anc |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) /\ ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 134 |
121 133
|
mpan2d |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 135 |
134
|
ss2rabdv |
|- ( ( ph /\ j e. NN ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } C_ { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 136 |
98
|
fveq1d |
|- ( n = j -> ( ( F ` n ) ` x ) = ( ( F ` j ) ` x ) ) |
| 137 |
136
|
breq2d |
|- ( n = j -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 138 |
137
|
rabbidv |
|- ( n = j -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 139 |
31
|
rabex |
|- { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } e. _V |
| 140 |
138 11 139
|
fvmpt |
|- ( j e. NN -> ( A ` j ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 141 |
140
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( A ` j ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 142 |
110
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
| 143 |
111
|
fveq1d |
|- ( n = ( j + 1 ) -> ( ( F ` n ) ` x ) = ( ( F ` ( j + 1 ) ) ` x ) ) |
| 144 |
143
|
breq2d |
|- ( n = ( j + 1 ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 145 |
144
|
rabbidv |
|- ( n = ( j + 1 ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 146 |
31
|
rabex |
|- { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } e. _V |
| 147 |
145 11 146
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( A ` ( j + 1 ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 148 |
142 147
|
syl |
|- ( ( ph /\ j e. NN ) -> ( A ` ( j + 1 ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 149 |
135 141 148
|
3sstr4d |
|- ( ( ph /\ j e. NN ) -> ( A ` j ) C_ ( A ` ( j + 1 ) ) ) |
| 150 |
66
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) e. RR ) |
| 151 |
57
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) e. RR ) |
| 152 |
63
|
an32s |
|- ( ( ( ph /\ x e. RR ) /\ n e. NN ) -> ( ( F ` n ) ` x ) e. RR ) |
| 153 |
152
|
fmpttd |
|- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) : NN --> RR ) |
| 154 |
153
|
frnd |
|- ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) |
| 155 |
|
1nn |
|- 1 e. NN |
| 156 |
|
eqid |
|- ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` x ) ) |
| 157 |
156 152
|
dmmptd |
|- ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = NN ) |
| 158 |
155 157
|
eleqtrrid |
|- ( ( ph /\ x e. RR ) -> 1 e. dom ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 159 |
158
|
ne0d |
|- ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 160 |
|
dm0rn0 |
|- ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) ) |
| 161 |
160
|
necon3bii |
|- ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 162 |
159 161
|
sylib |
|- ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 163 |
153
|
ffnd |
|- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) |
| 164 |
|
breq1 |
|- ( z = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) -> ( z <_ y <-> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 165 |
164
|
ralrn |
|- ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 166 |
163 165
|
syl |
|- ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 167 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
| 168 |
167
|
fveq1d |
|- ( n = m -> ( ( F ` n ) ` x ) = ( ( F ` m ) ` x ) ) |
| 169 |
|
fvex |
|- ( ( F ` m ) ` x ) e. _V |
| 170 |
168 156 169
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) = ( ( F ` m ) ` x ) ) |
| 171 |
170
|
breq1d |
|- ( m e. NN -> ( ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) |
| 172 |
171
|
ralbiia |
|- ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) |
| 173 |
168
|
breq1d |
|- ( n = m -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) |
| 174 |
173
|
cbvralvw |
|- ( A. n e. NN ( ( F ` n ) ` x ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) |
| 175 |
172 174
|
bitr4i |
|- ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
| 176 |
166 175
|
bitrdi |
|- ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) |
| 177 |
176
|
rexbidv |
|- ( ( ph /\ x e. RR ) -> ( E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) |
| 178 |
5 177
|
mpbird |
|- ( ( ph /\ x e. RR ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) |
| 179 |
154 162 178
|
suprcld |
|- ( ( ph /\ x e. RR ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
| 180 |
179
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
| 181 |
24
|
simp3d |
|- ( ph -> T < 1 ) |
| 182 |
181
|
adantr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> T < 1 ) |
| 183 |
25
|
adantr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> T e. RR ) |
| 184 |
|
1red |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> 1 e. RR ) |
| 185 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> 0 < ( H ` x ) ) |
| 186 |
|
ltmul1 |
|- ( ( T e. RR /\ 1 e. RR /\ ( ( H ` x ) e. RR /\ 0 < ( H ` x ) ) ) -> ( T < 1 <-> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) ) |
| 187 |
183 184 151 185 186
|
syl112anc |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T < 1 <-> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) ) |
| 188 |
182 187
|
mpbid |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) |
| 189 |
151
|
recnd |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) e. CC ) |
| 190 |
189
|
mullidd |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( 1 x. ( H ` x ) ) = ( H ` x ) ) |
| 191 |
188 190
|
breqtrd |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < ( H ` x ) ) |
| 192 |
179 1
|
fmptd |
|- ( ph -> G : RR --> RR ) |
| 193 |
192
|
ffnd |
|- ( ph -> G Fn RR ) |
| 194 |
31
|
a1i |
|- ( ph -> RR e. _V ) |
| 195 |
|
eqidd |
|- ( ( ph /\ y e. RR ) -> ( H ` y ) = ( H ` y ) ) |
| 196 |
|
fveq2 |
|- ( x = y -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` y ) ) |
| 197 |
196
|
mpteq2dv |
|- ( x = y -> ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` y ) ) ) |
| 198 |
197
|
rneqd |
|- ( x = y -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = ran ( n e. NN |-> ( ( F ` n ) ` y ) ) ) |
| 199 |
198
|
supeq1d |
|- ( x = y -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 200 |
|
ltso |
|- < Or RR |
| 201 |
200
|
supex |
|- sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) e. _V |
| 202 |
199 1 201
|
fvmpt |
|- ( y e. RR -> ( G ` y ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 203 |
202
|
adantl |
|- ( ( ph /\ y e. RR ) -> ( G ` y ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 204 |
51 193 194 194 33 195 203
|
ofrfval |
|- ( ph -> ( H oR <_ G <-> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) ) |
| 205 |
9 204
|
mpbid |
|- ( ph -> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 206 |
|
fveq2 |
|- ( x = y -> ( H ` x ) = ( H ` y ) ) |
| 207 |
206 199
|
breq12d |
|- ( x = y -> ( ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) ) |
| 208 |
207
|
cbvralvw |
|- ( A. x e. RR ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 209 |
205 208
|
sylibr |
|- ( ph -> A. x e. RR ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 210 |
209
|
r19.21bi |
|- ( ( ph /\ x e. RR ) -> ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 211 |
210
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 212 |
150 151 180 191 211
|
ltletrd |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 213 |
154
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) |
| 214 |
162
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 215 |
178
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) |
| 216 |
|
suprlub |
|- ( ( ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR /\ ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) /\ ( T x. ( H ` x ) ) e. RR ) -> ( ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) ) |
| 217 |
213 214 215 150 216
|
syl31anc |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) ) |
| 218 |
212 217
|
mpbid |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) |
| 219 |
163
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) |
| 220 |
|
breq2 |
|- ( w = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) -> ( ( T x. ( H ` x ) ) < w <-> ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) |
| 221 |
220
|
rexrn |
|- ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) |
| 222 |
219 221
|
syl |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) |
| 223 |
|
fvex |
|- ( ( F ` j ) ` x ) e. _V |
| 224 |
136 156 223
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) = ( ( F ` j ) ` x ) ) |
| 225 |
224
|
breq2d |
|- ( j e. NN -> ( ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) <-> ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) ) |
| 226 |
225
|
rexbiia |
|- ( E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) |
| 227 |
222 226
|
bitrdi |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) ) |
| 228 |
218 227
|
mpbid |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) |
| 229 |
183 151
|
remulcld |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) e. RR ) |
| 230 |
108
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 231 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> x e. RR ) |
| 232 |
230 231
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. ( 0 [,) +oo ) ) |
| 233 |
|
elrege0 |
|- ( ( ( F ` j ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) |
| 234 |
232 233
|
sylib |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) |
| 235 |
234
|
simpld |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) |
| 236 |
235
|
adantlrr |
|- ( ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) |
| 237 |
|
ltle |
|- ( ( ( T x. ( H ` x ) ) e. RR /\ ( ( F ` j ) ` x ) e. RR ) -> ( ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 238 |
229 236 237
|
syl2an2r |
|- ( ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) /\ j e. NN ) -> ( ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 239 |
238
|
reximdva |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 240 |
228 239
|
mpd |
|- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 241 |
240
|
anassrs |
|- ( ( ( ph /\ x e. RR ) /\ 0 < ( H ` x ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 242 |
155
|
ne0ii |
|- NN =/= (/) |
| 243 |
66
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> ( T x. ( H ` x ) ) e. RR ) |
| 244 |
243
|
adantr |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) e. RR ) |
| 245 |
|
0red |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 e. RR ) |
| 246 |
234
|
adantlrr |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) |
| 247 |
246
|
simpld |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) |
| 248 |
|
simplrr |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( H ` x ) <_ 0 ) |
| 249 |
57
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> ( H ` x ) e. RR ) |
| 250 |
249
|
adantr |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( H ` x ) e. RR ) |
| 251 |
25
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> T e. RR ) |
| 252 |
24
|
simp2d |
|- ( ph -> 0 < T ) |
| 253 |
252
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 < T ) |
| 254 |
|
lemul2 |
|- ( ( ( H ` x ) e. RR /\ 0 e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( H ` x ) <_ 0 <-> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) ) |
| 255 |
250 245 251 253 254
|
syl112anc |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( H ` x ) <_ 0 <-> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) ) |
| 256 |
248 255
|
mpbid |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) |
| 257 |
251
|
recnd |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> T e. CC ) |
| 258 |
257
|
mul01d |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. 0 ) = 0 ) |
| 259 |
256 258
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ 0 ) |
| 260 |
246
|
simprd |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 <_ ( ( F ` j ) ` x ) ) |
| 261 |
244 245 247 259 260
|
letrd |
|- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 262 |
261
|
ralrimiva |
|- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> A. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 263 |
|
r19.2z |
|- ( ( NN =/= (/) /\ A. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 264 |
242 262 263
|
sylancr |
|- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 265 |
264
|
anassrs |
|- ( ( ( ph /\ x e. RR ) /\ ( H ` x ) <_ 0 ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 266 |
|
0red |
|- ( ( ph /\ x e. RR ) -> 0 e. RR ) |
| 267 |
241 265 266 57
|
ltlecasei |
|- ( ( ph /\ x e. RR ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 268 |
267
|
ralrimiva |
|- ( ph -> A. x e. RR E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 269 |
|
rabid2 |
|- ( RR = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } <-> A. x e. RR E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 270 |
268 269
|
sylibr |
|- ( ph -> RR = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 271 |
|
iunrab |
|- U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } |
| 272 |
270 271
|
eqtr4di |
|- ( ph -> RR = U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 273 |
141
|
iuneq2dv |
|- ( ph -> U_ j e. NN ( A ` j ) = U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 274 |
96
|
ffnd |
|- ( ph -> A Fn NN ) |
| 275 |
|
fniunfv |
|- ( A Fn NN -> U_ j e. NN ( A ` j ) = U. ran A ) |
| 276 |
274 275
|
syl |
|- ( ph -> U_ j e. NN ( A ` j ) = U. ran A ) |
| 277 |
272 273 276
|
3eqtr2rd |
|- ( ph -> U. ran A = RR ) |
| 278 |
|
eqid |
|- ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) |
| 279 |
96 149 277 8 278
|
itg1climres |
|- ( ph -> ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ~~> ( S.1 ` H ) ) |
| 280 |
|
nnex |
|- NN e. _V |
| 281 |
280
|
mptex |
|- ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) e. _V |
| 282 |
281
|
a1i |
|- ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) e. _V ) |
| 283 |
|
fveq2 |
|- ( j = k -> ( A ` j ) = ( A ` k ) ) |
| 284 |
283
|
eleq2d |
|- ( j = k -> ( x e. ( A ` j ) <-> x e. ( A ` k ) ) ) |
| 285 |
284
|
ifbid |
|- ( j = k -> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) = if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) |
| 286 |
285
|
mpteq2dv |
|- ( j = k -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) |
| 287 |
286
|
fveq2d |
|- ( j = k -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 288 |
|
eqid |
|- ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) = ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) |
| 289 |
|
fvex |
|- ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. _V |
| 290 |
287 288 289
|
fvmpt |
|- ( k e. NN -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 291 |
290
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 292 |
96
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( A ` k ) e. dom vol ) |
| 293 |
|
eqid |
|- ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) |
| 294 |
293
|
i1fres |
|- ( ( H e. dom S.1 /\ ( A ` k ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 295 |
8 292 294
|
syl2an2r |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 296 |
|
itg1cl |
|- ( ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. RR ) |
| 297 |
295 296
|
syl |
|- ( ( ph /\ k e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. RR ) |
| 298 |
291 297
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) e. RR ) |
| 299 |
298
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) e. CC ) |
| 300 |
287
|
oveq2d |
|- ( j = k -> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 301 |
|
eqid |
|- ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) = ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) |
| 302 |
|
ovex |
|- ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) e. _V |
| 303 |
300 301 302
|
fvmpt |
|- ( k e. NN -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 304 |
290
|
oveq2d |
|- ( k e. NN -> ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 305 |
303 304
|
eqtr4d |
|- ( k e. NN -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) ) |
| 306 |
305
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) ) |
| 307 |
12 13 279 55 282 299 306
|
climmulc2 |
|- ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ~~> ( T x. ( S.1 ` H ) ) ) |
| 308 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 309 |
|
fss |
|- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 310 |
3 308 309
|
sylancl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 311 |
10
|
adantr |
|- ( ( ph /\ n e. NN ) -> S e. RR ) |
| 312 |
|
itg2cl |
|- ( ( F ` n ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 313 |
310 312
|
syl |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 314 |
313
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR* ) |
| 315 |
314
|
frnd |
|- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* ) |
| 316 |
|
fvex |
|- ( S.2 ` ( F ` n ) ) e. _V |
| 317 |
316
|
elabrex |
|- ( n e. NN -> ( S.2 ` ( F ` n ) ) e. { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } ) |
| 318 |
317
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } ) |
| 319 |
|
eqid |
|- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) |
| 320 |
319
|
rnmpt |
|- ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } |
| 321 |
318 320
|
eleqtrrdi |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 322 |
|
supxrub |
|- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* /\ ( S.2 ` ( F ` n ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) -> ( S.2 ` ( F ` n ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
| 323 |
315 321 322
|
syl2an2r |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
| 324 |
323 6
|
breqtrrdi |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ S ) |
| 325 |
|
itg2lecl |
|- ( ( ( F ` n ) : RR --> ( 0 [,] +oo ) /\ S e. RR /\ ( S.2 ` ( F ` n ) ) <_ S ) -> ( S.2 ` ( F ` n ) ) e. RR ) |
| 326 |
310 311 324 325
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR ) |
| 327 |
326
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR ) |
| 328 |
310
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 329 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
| 330 |
329
|
feq1d |
|- ( n = k -> ( ( F ` n ) : RR --> ( 0 [,] +oo ) <-> ( F ` k ) : RR --> ( 0 [,] +oo ) ) ) |
| 331 |
330
|
cbvralvw |
|- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) <-> A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 332 |
328 331
|
sylib |
|- ( ph -> A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 333 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 334 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 335 |
334
|
feq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) : RR --> ( 0 [,] +oo ) <-> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) ) |
| 336 |
335
|
rspccva |
|- ( ( A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) /\ ( n + 1 ) e. NN ) -> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) |
| 337 |
332 333 336
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) |
| 338 |
|
itg2le |
|- ( ( ( F ` n ) : RR --> ( 0 [,] +oo ) /\ ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) /\ ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) -> ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 339 |
310 337 4 338
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 340 |
339
|
ralrimiva |
|- ( ph -> A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 341 |
|
2fveq3 |
|- ( n = k -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` k ) ) ) |
| 342 |
|
fvex |
|- ( S.2 ` ( F ` k ) ) e. _V |
| 343 |
341 319 342
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) = ( S.2 ` ( F ` k ) ) ) |
| 344 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 345 |
|
2fveq3 |
|- ( n = ( k + 1 ) -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 346 |
|
fvex |
|- ( S.2 ` ( F ` ( k + 1 ) ) ) e. _V |
| 347 |
345 319 346
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 348 |
344 347
|
syl |
|- ( k e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 349 |
343 348
|
breq12d |
|- ( k e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) ) |
| 350 |
349
|
ralbiia |
|- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 351 |
|
fvoveq1 |
|- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
| 352 |
351
|
fveq2d |
|- ( n = k -> ( S.2 ` ( F ` ( n + 1 ) ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 353 |
341 352
|
breq12d |
|- ( n = k -> ( ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) <-> ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) ) |
| 354 |
353
|
cbvralvw |
|- ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 355 |
350 354
|
bitr4i |
|- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 356 |
340 355
|
sylibr |
|- ( ph -> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) ) |
| 357 |
356
|
r19.21bi |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) ) |
| 358 |
324
|
ralrimiva |
|- ( ph -> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) |
| 359 |
343
|
breq1d |
|- ( k e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> ( S.2 ` ( F ` k ) ) <_ x ) ) |
| 360 |
359
|
ralbiia |
|- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ x ) |
| 361 |
341
|
breq1d |
|- ( n = k -> ( ( S.2 ` ( F ` n ) ) <_ x <-> ( S.2 ` ( F ` k ) ) <_ x ) ) |
| 362 |
361
|
cbvralvw |
|- ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ x <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ x ) |
| 363 |
360 362
|
bitr4i |
|- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ x ) |
| 364 |
|
breq2 |
|- ( x = S -> ( ( S.2 ` ( F ` n ) ) <_ x <-> ( S.2 ` ( F ` n ) ) <_ S ) ) |
| 365 |
364
|
ralbidv |
|- ( x = S -> ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) ) |
| 366 |
363 365
|
bitrid |
|- ( x = S -> ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) ) |
| 367 |
366
|
rspcev |
|- ( ( S e. RR /\ A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) -> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) |
| 368 |
10 358 367
|
syl2anc |
|- ( ph -> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) |
| 369 |
12 13 327 357 368
|
climsup |
|- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ~~> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) |
| 370 |
327
|
frnd |
|- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR ) |
| 371 |
319 313
|
dmmptd |
|- ( ph -> dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = NN ) |
| 372 |
242
|
a1i |
|- ( ph -> NN =/= (/) ) |
| 373 |
371 372
|
eqnetrd |
|- ( ph -> dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) |
| 374 |
|
dm0rn0 |
|- ( dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = (/) <-> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = (/) ) |
| 375 |
374
|
necon3bii |
|- ( dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) <-> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) |
| 376 |
373 375
|
sylib |
|- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) |
| 377 |
316 319
|
fnmpti |
|- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN |
| 378 |
|
breq1 |
|- ( z = ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) -> ( z <_ x <-> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 379 |
378
|
ralrn |
|- ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 380 |
377 379
|
mp1i |
|- ( ph -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 381 |
380
|
rexbidv |
|- ( ph -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 382 |
368 381
|
mpbird |
|- ( ph -> E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x ) |
| 383 |
|
supxrre |
|- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR /\ ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) |
| 384 |
370 376 382 383
|
syl3anc |
|- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) |
| 385 |
6 384
|
eqtr2id |
|- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) = S ) |
| 386 |
369 385
|
breqtrd |
|- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ~~> S ) |
| 387 |
25
|
adantr |
|- ( ( ph /\ j e. NN ) -> T e. RR ) |
| 388 |
96
|
ffvelcdmda |
|- ( ( ph /\ j e. NN ) -> ( A ` j ) e. dom vol ) |
| 389 |
278
|
i1fres |
|- ( ( H e. dom S.1 /\ ( A ` j ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 390 |
8 388 389
|
syl2an2r |
|- ( ( ph /\ j e. NN ) -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 391 |
|
itg1cl |
|- ( ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) e. RR ) |
| 392 |
390 391
|
syl |
|- ( ( ph /\ j e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) e. RR ) |
| 393 |
387 392
|
remulcld |
|- ( ( ph /\ j e. NN ) -> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) e. RR ) |
| 394 |
393
|
fmpttd |
|- ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) : NN --> RR ) |
| 395 |
394
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) e. RR ) |
| 396 |
327
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) e. RR ) |
| 397 |
329
|
feq1d |
|- ( n = k -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` k ) : RR --> ( 0 [,) +oo ) ) ) |
| 398 |
397
|
cbvralvw |
|- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. k e. NN ( F ` k ) : RR --> ( 0 [,) +oo ) ) |
| 399 |
104 398
|
sylib |
|- ( ph -> A. k e. NN ( F ` k ) : RR --> ( 0 [,) +oo ) ) |
| 400 |
399
|
r19.21bi |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) : RR --> ( 0 [,) +oo ) ) |
| 401 |
|
fss |
|- ( ( ( F ` k ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 402 |
400 308 401
|
sylancl |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 403 |
31
|
a1i |
|- ( ( ph /\ k e. NN ) -> RR e. _V ) |
| 404 |
25
|
adantr |
|- ( ( ph /\ k e. NN ) -> T e. RR ) |
| 405 |
404
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> T e. RR ) |
| 406 |
|
fvex |
|- ( H ` x ) e. _V |
| 407 |
|
c0ex |
|- 0 e. _V |
| 408 |
406 407
|
ifex |
|- if ( x e. ( A ` k ) , ( H ` x ) , 0 ) e. _V |
| 409 |
408
|
a1i |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) e. _V ) |
| 410 |
|
fconstmpt |
|- ( RR X. { T } ) = ( x e. RR |-> T ) |
| 411 |
410
|
a1i |
|- ( ( ph /\ k e. NN ) -> ( RR X. { T } ) = ( x e. RR |-> T ) ) |
| 412 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) |
| 413 |
403 405 409 411 412
|
offval2 |
|- ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 414 |
|
ovif2 |
|- ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , ( T x. 0 ) ) |
| 415 |
55
|
adantr |
|- ( ( ph /\ k e. NN ) -> T e. CC ) |
| 416 |
415
|
mul01d |
|- ( ( ph /\ k e. NN ) -> ( T x. 0 ) = 0 ) |
| 417 |
416
|
ifeq2d |
|- ( ( ph /\ k e. NN ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , ( T x. 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) |
| 418 |
414 417
|
eqtrid |
|- ( ( ph /\ k e. NN ) -> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) |
| 419 |
418
|
mpteq2dv |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) |
| 420 |
413 419
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) |
| 421 |
295 404
|
i1fmulc |
|- ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. dom S.1 ) |
| 422 |
420 421
|
eqeltrrd |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) e. dom S.1 ) |
| 423 |
|
iftrue |
|- ( x e. ( A ` k ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = ( T x. ( H ` x ) ) ) |
| 424 |
423
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = ( T x. ( H ` x ) ) ) |
| 425 |
329
|
fveq1d |
|- ( n = k -> ( ( F ` n ) ` x ) = ( ( F ` k ) ` x ) ) |
| 426 |
425
|
breq2d |
|- ( n = k -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) ) |
| 427 |
426
|
rabbidv |
|- ( n = k -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 428 |
31
|
rabex |
|- { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } e. _V |
| 429 |
427 11 428
|
fvmpt |
|- ( k e. NN -> ( A ` k ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 430 |
429
|
ad2antlr |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( A ` k ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 431 |
430
|
eleq2d |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( x e. ( A ` k ) <-> x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) ) |
| 432 |
431
|
biimpa |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 433 |
|
rabid |
|- ( x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } <-> ( x e. RR /\ ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) ) |
| 434 |
433
|
simprbi |
|- ( x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } -> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) |
| 435 |
432 434
|
syl |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) |
| 436 |
424 435
|
eqbrtrd |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 437 |
|
iffalse |
|- ( -. x e. ( A ` k ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = 0 ) |
| 438 |
437
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = 0 ) |
| 439 |
400
|
ffvelcdmda |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) ) |
| 440 |
|
elrege0 |
|- ( ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` k ) ` x ) e. RR /\ 0 <_ ( ( F ` k ) ` x ) ) ) |
| 441 |
440
|
simprbi |
|- ( ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) -> 0 <_ ( ( F ` k ) ` x ) ) |
| 442 |
439 441
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> 0 <_ ( ( F ` k ) ` x ) ) |
| 443 |
442
|
adantr |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> 0 <_ ( ( F ` k ) ` x ) ) |
| 444 |
438 443
|
eqbrtrd |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 445 |
436 444
|
pm2.61dan |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 446 |
445
|
ralrimiva |
|- ( ( ph /\ k e. NN ) -> A. x e. RR if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 447 |
|
ovex |
|- ( T x. ( H ` x ) ) e. _V |
| 448 |
447 407
|
ifex |
|- if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) e. _V |
| 449 |
448
|
a1i |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) e. _V ) |
| 450 |
|
fvexd |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( ( F ` k ) ` x ) e. _V ) |
| 451 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) |
| 452 |
400
|
feqmptd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( x e. RR |-> ( ( F ` k ) ` x ) ) ) |
| 453 |
403 449 450 451 452
|
ofrfval2 |
|- ( ( ph /\ k e. NN ) -> ( ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) <-> A. x e. RR if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) ) |
| 454 |
446 453
|
mpbird |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) ) |
| 455 |
|
itg2ub |
|- ( ( ( F ` k ) : RR --> ( 0 [,] +oo ) /\ ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) e. dom S.1 /\ ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) <_ ( S.2 ` ( F ` k ) ) ) |
| 456 |
402 422 454 455
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) <_ ( S.2 ` ( F ` k ) ) ) |
| 457 |
303
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 458 |
295 404
|
itg1mulc |
|- ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 459 |
420
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) ) |
| 460 |
457 458 459
|
3eqtr2d |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) ) |
| 461 |
343
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) = ( S.2 ` ( F ` k ) ) ) |
| 462 |
456 460 461
|
3brtr4d |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) ) |
| 463 |
12 13 307 386 395 396 462
|
climle |
|- ( ph -> ( T x. ( S.1 ` H ) ) <_ S ) |