| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg1climres.1 |
|- ( ph -> A : NN --> dom vol ) |
| 2 |
|
itg1climres.2 |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
| 3 |
|
itg1climres.3 |
|- ( ph -> U. ran A = RR ) |
| 4 |
|
itg1climres.4 |
|- ( ph -> F e. dom S.1 ) |
| 5 |
|
itg1climres.5 |
|- G = ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 7 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 8 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
| 9 |
4 8
|
syl |
|- ( ph -> ran F e. Fin ) |
| 10 |
|
difss |
|- ( ran F \ { 0 } ) C_ ran F |
| 11 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
| 12 |
9 10 11
|
sylancl |
|- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
| 13 |
|
1zzd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 1 e. ZZ ) |
| 14 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) |
| 15 |
4 14
|
syl |
|- ( ph -> ( `' F " { k } ) e. dom vol ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) e. dom vol ) |
| 17 |
1
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. dom vol ) |
| 18 |
17
|
adantlr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) e. dom vol ) |
| 19 |
|
inmbl |
|- ( ( ( `' F " { k } ) e. dom vol /\ ( A ` n ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) |
| 20 |
16 18 19
|
syl2anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) |
| 21 |
|
mblvol |
|- ( ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 23 |
|
inss1 |
|- ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) |
| 24 |
23
|
a1i |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) ) |
| 25 |
|
mblss |
|- ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) |
| 26 |
16 25
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) C_ RR ) |
| 27 |
|
mblvol |
|- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 28 |
16 27
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 29 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 30 |
4 29
|
sylan |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 31 |
30
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 32 |
28 31
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( `' F " { k } ) ) e. RR ) |
| 33 |
|
ovolsscl |
|- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) e. RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
| 34 |
24 26 32 33
|
syl3anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
| 35 |
22 34
|
eqeltrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
| 36 |
35
|
fmpttd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR ) |
| 37 |
2
|
adantlr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
| 38 |
|
sslin |
|- ( ( A ` n ) C_ ( A ` ( n + 1 ) ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 39 |
37 38
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 40 |
1
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A : NN --> dom vol ) |
| 41 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 42 |
|
ffvelcdm |
|- ( ( A : NN --> dom vol /\ ( n + 1 ) e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) |
| 43 |
40 41 42
|
syl2an |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) |
| 44 |
|
inmbl |
|- ( ( ( `' F " { k } ) e. dom vol /\ ( A ` ( n + 1 ) ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) |
| 45 |
16 43 44
|
syl2anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) |
| 46 |
|
mblss |
|- ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) |
| 47 |
45 46
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) |
| 48 |
|
ovolss |
|- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) /\ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 49 |
39 47 48
|
syl2anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 50 |
|
mblvol |
|- ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 51 |
45 50
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 52 |
49 22 51
|
3brtr4d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 53 |
52
|
ralrimiva |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 54 |
|
fveq2 |
|- ( n = j -> ( A ` n ) = ( A ` j ) ) |
| 55 |
54
|
ineq2d |
|- ( n = j -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) |
| 56 |
55
|
fveq2d |
|- ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) |
| 57 |
|
eqid |
|- ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 58 |
|
fvex |
|- ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) e. _V |
| 59 |
56 57 58
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) |
| 60 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
| 61 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( A ` n ) = ( A ` ( j + 1 ) ) ) |
| 62 |
61
|
ineq2d |
|- ( n = ( j + 1 ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 63 |
62
|
fveq2d |
|- ( n = ( j + 1 ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 64 |
|
fvex |
|- ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) e. _V |
| 65 |
63 57 64
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 66 |
60 65
|
syl |
|- ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 67 |
59 66
|
breq12d |
|- ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) |
| 68 |
67
|
ralbiia |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 69 |
|
fvoveq1 |
|- ( n = j -> ( A ` ( n + 1 ) ) = ( A ` ( j + 1 ) ) ) |
| 70 |
69
|
ineq2d |
|- ( n = j -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 71 |
70
|
fveq2d |
|- ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 72 |
56 71
|
breq12d |
|- ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) |
| 73 |
72
|
cbvralvw |
|- ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 74 |
68 73
|
bitr4i |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 75 |
53 74
|
sylibr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) |
| 76 |
75
|
r19.21bi |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) |
| 77 |
|
ovolss |
|- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) |
| 78 |
23 26 77
|
sylancr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) |
| 79 |
78 22 28
|
3brtr4d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 80 |
79
|
ralrimiva |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 81 |
59
|
breq1d |
|- ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) |
| 82 |
81
|
ralbiia |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 83 |
56
|
breq1d |
|- ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) |
| 84 |
83
|
cbvralvw |
|- ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 85 |
82 84
|
bitr4i |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 86 |
80 85
|
sylibr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 87 |
|
brralrspcev |
|- ( ( ( vol ` ( `' F " { k } ) ) e. RR /\ A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) |
| 88 |
30 86 87
|
syl2anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) |
| 89 |
6 13 36 76 88
|
climsup |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 90 |
20
|
fmpttd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol ) |
| 91 |
39
|
ralrimiva |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 92 |
|
eqid |
|- ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) |
| 93 |
|
fvex |
|- ( A ` j ) e. _V |
| 94 |
93
|
inex2 |
|- ( ( `' F " { k } ) i^i ( A ` j ) ) e. _V |
| 95 |
55 92 94
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) |
| 96 |
|
fvex |
|- ( A ` ( j + 1 ) ) e. _V |
| 97 |
96
|
inex2 |
|- ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) e. _V |
| 98 |
62 92 97
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 99 |
60 98
|
syl |
|- ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 100 |
95 99
|
sseq12d |
|- ( j e. NN -> ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 101 |
100
|
ralbiia |
|- ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 102 |
55 70
|
sseq12d |
|- ( n = j -> ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 103 |
102
|
cbvralvw |
|- ( A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 104 |
101 103
|
bitr4i |
|- ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 105 |
91 104
|
sylibr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) |
| 106 |
|
volsup |
|- ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol /\ A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 107 |
90 105 106
|
syl2anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 108 |
95
|
iuneq2i |
|- U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) |
| 109 |
55
|
cbviunv |
|- U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) |
| 110 |
|
iunin2 |
|- U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) |
| 111 |
108 109 110
|
3eqtr2i |
|- U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) |
| 112 |
|
ffn |
|- ( A : NN --> dom vol -> A Fn NN ) |
| 113 |
|
fniunfv |
|- ( A Fn NN -> U_ n e. NN ( A ` n ) = U. ran A ) |
| 114 |
1 112 113
|
3syl |
|- ( ph -> U_ n e. NN ( A ` n ) = U. ran A ) |
| 115 |
114 3
|
eqtrd |
|- ( ph -> U_ n e. NN ( A ` n ) = RR ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ n e. NN ( A ` n ) = RR ) |
| 117 |
116
|
ineq2d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( ( `' F " { k } ) i^i RR ) ) |
| 118 |
15
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol ) |
| 119 |
118 25
|
syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR ) |
| 120 |
|
dfss2 |
|- ( ( `' F " { k } ) C_ RR <-> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) |
| 121 |
119 120
|
sylib |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) |
| 122 |
117 121
|
eqtrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( `' F " { k } ) ) |
| 123 |
111 122
|
eqtrid |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( `' F " { k } ) ) |
| 124 |
|
ffn |
|- ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN ) |
| 125 |
|
fniunfv |
|- ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 126 |
90 124 125
|
3syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 127 |
123 126
|
eqtr3d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 128 |
127
|
fveq2d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 129 |
36
|
frnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR ) |
| 130 |
36
|
fdmd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = NN ) |
| 131 |
|
1nn |
|- 1 e. NN |
| 132 |
|
ne0i |
|- ( 1 e. NN -> NN =/= (/) ) |
| 133 |
131 132
|
mp1i |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> NN =/= (/) ) |
| 134 |
130 133
|
eqnetrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
| 135 |
|
dm0rn0 |
|- ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) ) |
| 136 |
135
|
necon3bii |
|- ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
| 137 |
134 136
|
sylib |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
| 138 |
|
ffn |
|- ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN ) |
| 139 |
|
breq1 |
|- ( z = ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) -> ( z <_ x <-> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 140 |
139
|
ralrn |
|- ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 141 |
36 138 140
|
3syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 142 |
141
|
rexbidv |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 143 |
88 142
|
mpbird |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) |
| 144 |
|
supxrre |
|- ( ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR /\ ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 145 |
129 137 143 144
|
syl3anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 146 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
| 147 |
146
|
a1i |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> vol : dom vol --> ( 0 [,] +oo ) ) |
| 148 |
147 20
|
cofmpt |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 149 |
148
|
rneqd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 150 |
|
rnco2 |
|- ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 151 |
149 150
|
eqtr3di |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 152 |
151
|
supeq1d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 153 |
145 152
|
eqtr3d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 154 |
107 128 153
|
3eqtr4d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 155 |
89 154
|
breqtrrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> ( vol ` ( `' F " { k } ) ) ) |
| 156 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 157 |
|
frn |
|- ( F : RR --> RR -> ran F C_ RR ) |
| 158 |
4 156 157
|
3syl |
|- ( ph -> ran F C_ RR ) |
| 159 |
158
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 160 |
159
|
sselda |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 161 |
160
|
recnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 162 |
|
nnex |
|- NN e. _V |
| 163 |
162
|
mptex |
|- ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V |
| 164 |
163
|
a1i |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V ) |
| 165 |
36
|
ffvelcdmda |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. RR ) |
| 166 |
165
|
recnd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. CC ) |
| 167 |
56
|
oveq2d |
|- ( n = j -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 168 |
|
eqid |
|- ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 169 |
|
ovex |
|- ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V |
| 170 |
167 168 169
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 171 |
59
|
oveq2d |
|- ( j e. NN -> ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 172 |
170 171
|
eqtr4d |
|- ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) |
| 173 |
172
|
adantl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) |
| 174 |
6 13 155 161 164 166 173
|
climmulc2 |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ~~> ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 175 |
162
|
mptex |
|- ( n e. NN |-> ( S.1 ` G ) ) e. _V |
| 176 |
175
|
a1i |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) e. _V ) |
| 177 |
160
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> k e. RR ) |
| 178 |
177 35
|
remulcld |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) e. RR ) |
| 179 |
178
|
fmpttd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) : NN --> RR ) |
| 180 |
179
|
ffvelcdmda |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. RR ) |
| 181 |
180
|
recnd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) |
| 182 |
181
|
anasss |
|- ( ( ph /\ ( k e. ( ran F \ { 0 } ) /\ j e. NN ) ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) |
| 183 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> F e. dom S.1 ) |
| 184 |
5
|
i1fres |
|- ( ( F e. dom S.1 /\ ( A ` n ) e. dom vol ) -> G e. dom S.1 ) |
| 185 |
183 17 184
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> G e. dom S.1 ) |
| 186 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) e. Fin ) |
| 187 |
|
ffn |
|- ( F : RR --> RR -> F Fn RR ) |
| 188 |
4 156 187
|
3syl |
|- ( ph -> F Fn RR ) |
| 189 |
188
|
adantr |
|- ( ( ph /\ n e. NN ) -> F Fn RR ) |
| 190 |
|
fnfvelrn |
|- ( ( F Fn RR /\ x e. RR ) -> ( F ` x ) e. ran F ) |
| 191 |
189 190
|
sylan |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ran F ) |
| 192 |
|
i1f0rn |
|- ( F e. dom S.1 -> 0 e. ran F ) |
| 193 |
4 192
|
syl |
|- ( ph -> 0 e. ran F ) |
| 194 |
193
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. ran F ) |
| 195 |
191 194
|
ifcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. ran F ) |
| 196 |
195 5
|
fmptd |
|- ( ( ph /\ n e. NN ) -> G : RR --> ran F ) |
| 197 |
|
frn |
|- ( G : RR --> ran F -> ran G C_ ran F ) |
| 198 |
|
ssdif |
|- ( ran G C_ ran F -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) |
| 199 |
196 197 198
|
3syl |
|- ( ( ph /\ n e. NN ) -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) |
| 200 |
158
|
adantr |
|- ( ( ph /\ n e. NN ) -> ran F C_ RR ) |
| 201 |
200
|
ssdifd |
|- ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) |
| 202 |
|
itg1val2 |
|- ( ( G e. dom S.1 /\ ( ( ran F \ { 0 } ) e. Fin /\ ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) /\ ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) |
| 203 |
185 186 199 201 202
|
syl13anc |
|- ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) |
| 204 |
|
fvex |
|- ( F ` x ) e. _V |
| 205 |
|
c0ex |
|- 0 e. _V |
| 206 |
204 205
|
ifex |
|- if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V |
| 207 |
5
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 208 |
206 207
|
mpan2 |
|- ( x e. RR -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 209 |
208
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 210 |
209
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) |
| 211 |
|
eldifsni |
|- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
| 212 |
211
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) |
| 213 |
|
neeq1 |
|- ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 <-> k =/= 0 ) ) |
| 214 |
212 213
|
syl5ibrcom |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 ) ) |
| 215 |
|
iffalse |
|- ( -. x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = 0 ) |
| 216 |
215
|
necon1ai |
|- ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 -> x e. ( A ` n ) ) |
| 217 |
214 216
|
syl6 |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> x e. ( A ` n ) ) ) |
| 218 |
217
|
pm4.71rd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) |
| 219 |
210 218
|
bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) |
| 220 |
|
iftrue |
|- ( x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = ( F ` x ) ) |
| 221 |
220
|
eqeq1d |
|- ( x e. ( A ` n ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( F ` x ) = k ) ) |
| 222 |
221
|
pm5.32i |
|- ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( x e. ( A ` n ) /\ ( F ` x ) = k ) ) |
| 223 |
222
|
biancomi |
|- ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) |
| 224 |
219 223
|
bitrdi |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) |
| 225 |
224
|
pm5.32da |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) ) |
| 226 |
|
anass |
|- ( ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) |
| 227 |
225 226
|
bitr4di |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
| 228 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
| 229 |
|
ffn |
|- ( G : RR --> RR -> G Fn RR ) |
| 230 |
185 228 229
|
3syl |
|- ( ( ph /\ n e. NN ) -> G Fn RR ) |
| 231 |
230
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> G Fn RR ) |
| 232 |
|
fniniseg |
|- ( G Fn RR -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) |
| 233 |
231 232
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) |
| 234 |
|
elin |
|- ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) ) |
| 235 |
189
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR ) |
| 236 |
|
fniniseg |
|- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 237 |
235 236
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 238 |
237
|
anbi1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
| 239 |
234 238
|
bitrid |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
| 240 |
227 233 239
|
3bitr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 241 |
240
|
alrimiv |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 242 |
|
nfmpt1 |
|- F/_ x ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 243 |
5 242
|
nfcxfr |
|- F/_ x G |
| 244 |
243
|
nfcnv |
|- F/_ x `' G |
| 245 |
|
nfcv |
|- F/_ x { k } |
| 246 |
244 245
|
nfima |
|- F/_ x ( `' G " { k } ) |
| 247 |
|
nfcv |
|- F/_ x ( ( `' F " { k } ) i^i ( A ` n ) ) |
| 248 |
246 247
|
cleqf |
|- ( ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) <-> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 249 |
241 248
|
sylibr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) ) |
| 250 |
249
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' G " { k } ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 251 |
250
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' G " { k } ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 252 |
251
|
sumeq2dv |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 253 |
203 252
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 254 |
253
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ) |
| 255 |
254
|
fveq1d |
|- ( ph -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
| 256 |
167
|
sumeq2sdv |
|- ( n = j -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 257 |
|
eqid |
|- ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 258 |
|
sumex |
|- sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V |
| 259 |
256 257 258
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 260 |
170
|
sumeq2sdv |
|- ( j e. NN -> sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 261 |
259 260
|
eqtr4d |
|- ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
| 262 |
255 261
|
sylan9eq |
|- ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
| 263 |
6 7 12 174 176 182 262
|
climfsum |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 264 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 265 |
4 264
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 266 |
263 265
|
breqtrrd |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> ( S.1 ` F ) ) |