Metamath Proof Explorer


Theorem itg1climres

Description: Restricting the simple function F to the increasing sequence A ( n ) of measurable sets whose union is RR yields a sequence of simple functions whose integrals approach the integral of F . (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses itg1climres.1 φ A : dom vol
itg1climres.2 φ n A n A n + 1
itg1climres.3 φ ran A =
itg1climres.4 φ F dom 1
itg1climres.5 G = x if x A n F x 0
Assertion itg1climres φ n 1 G 1 F

Proof

Step Hyp Ref Expression
1 itg1climres.1 φ A : dom vol
2 itg1climres.2 φ n A n A n + 1
3 itg1climres.3 φ ran A =
4 itg1climres.4 φ F dom 1
5 itg1climres.5 G = x if x A n F x 0
6 nnuz = 1
7 1zzd φ 1
8 i1frn F dom 1 ran F Fin
9 4 8 syl φ ran F Fin
10 difss ran F 0 ran F
11 ssfi ran F Fin ran F 0 ran F ran F 0 Fin
12 9 10 11 sylancl φ ran F 0 Fin
13 1zzd φ k ran F 0 1
14 i1fima F dom 1 F -1 k dom vol
15 4 14 syl φ F -1 k dom vol
16 15 ad2antrr φ k ran F 0 n F -1 k dom vol
17 1 ffvelrnda φ n A n dom vol
18 17 adantlr φ k ran F 0 n A n dom vol
19 inmbl F -1 k dom vol A n dom vol F -1 k A n dom vol
20 16 18 19 syl2anc φ k ran F 0 n F -1 k A n dom vol
21 mblvol F -1 k A n dom vol vol F -1 k A n = vol * F -1 k A n
22 20 21 syl φ k ran F 0 n vol F -1 k A n = vol * F -1 k A n
23 inss1 F -1 k A n F -1 k
24 23 a1i φ k ran F 0 n F -1 k A n F -1 k
25 mblss F -1 k dom vol F -1 k
26 16 25 syl φ k ran F 0 n F -1 k
27 mblvol F -1 k dom vol vol F -1 k = vol * F -1 k
28 16 27 syl φ k ran F 0 n vol F -1 k = vol * F -1 k
29 i1fima2sn F dom 1 k ran F 0 vol F -1 k
30 4 29 sylan φ k ran F 0 vol F -1 k
31 30 adantr φ k ran F 0 n vol F -1 k
32 28 31 eqeltrrd φ k ran F 0 n vol * F -1 k
33 ovolsscl F -1 k A n F -1 k F -1 k vol * F -1 k vol * F -1 k A n
34 24 26 32 33 syl3anc φ k ran F 0 n vol * F -1 k A n
35 22 34 eqeltrd φ k ran F 0 n vol F -1 k A n
36 35 fmpttd φ k ran F 0 n vol F -1 k A n :
37 2 adantlr φ k ran F 0 n A n A n + 1
38 sslin A n A n + 1 F -1 k A n F -1 k A n + 1
39 37 38 syl φ k ran F 0 n F -1 k A n F -1 k A n + 1
40 1 adantr φ k ran F 0 A : dom vol
41 peano2nn n n + 1
42 ffvelrn A : dom vol n + 1 A n + 1 dom vol
43 40 41 42 syl2an φ k ran F 0 n A n + 1 dom vol
44 inmbl F -1 k dom vol A n + 1 dom vol F -1 k A n + 1 dom vol
45 16 43 44 syl2anc φ k ran F 0 n F -1 k A n + 1 dom vol
46 mblss F -1 k A n + 1 dom vol F -1 k A n + 1
47 45 46 syl φ k ran F 0 n F -1 k A n + 1
48 ovolss F -1 k A n F -1 k A n + 1 F -1 k A n + 1 vol * F -1 k A n vol * F -1 k A n + 1
49 39 47 48 syl2anc φ k ran F 0 n vol * F -1 k A n vol * F -1 k A n + 1
50 mblvol F -1 k A n + 1 dom vol vol F -1 k A n + 1 = vol * F -1 k A n + 1
51 45 50 syl φ k ran F 0 n vol F -1 k A n + 1 = vol * F -1 k A n + 1
52 49 22 51 3brtr4d φ k ran F 0 n vol F -1 k A n vol F -1 k A n + 1
53 52 ralrimiva φ k ran F 0 n vol F -1 k A n vol F -1 k A n + 1
54 fveq2 n = j A n = A j
55 54 ineq2d n = j F -1 k A n = F -1 k A j
56 55 fveq2d n = j vol F -1 k A n = vol F -1 k A j
57 eqid n vol F -1 k A n = n vol F -1 k A n
58 fvex vol F -1 k A j V
59 56 57 58 fvmpt j n vol F -1 k A n j = vol F -1 k A j
60 peano2nn j j + 1
61 fveq2 n = j + 1 A n = A j + 1
62 61 ineq2d n = j + 1 F -1 k A n = F -1 k A j + 1
63 62 fveq2d n = j + 1 vol F -1 k A n = vol F -1 k A j + 1
64 fvex vol F -1 k A j + 1 V
65 63 57 64 fvmpt j + 1 n vol F -1 k A n j + 1 = vol F -1 k A j + 1
66 60 65 syl j n vol F -1 k A n j + 1 = vol F -1 k A j + 1
67 59 66 breq12d j n vol F -1 k A n j n vol F -1 k A n j + 1 vol F -1 k A j vol F -1 k A j + 1
68 67 ralbiia j n vol F -1 k A n j n vol F -1 k A n j + 1 j vol F -1 k A j vol F -1 k A j + 1
69 fvoveq1 n = j A n + 1 = A j + 1
70 69 ineq2d n = j F -1 k A n + 1 = F -1 k A j + 1
71 70 fveq2d n = j vol F -1 k A n + 1 = vol F -1 k A j + 1
72 56 71 breq12d n = j vol F -1 k A n vol F -1 k A n + 1 vol F -1 k A j vol F -1 k A j + 1
73 72 cbvralvw n vol F -1 k A n vol F -1 k A n + 1 j vol F -1 k A j vol F -1 k A j + 1
74 68 73 bitr4i j n vol F -1 k A n j n vol F -1 k A n j + 1 n vol F -1 k A n vol F -1 k A n + 1
75 53 74 sylibr φ k ran F 0 j n vol F -1 k A n j n vol F -1 k A n j + 1
76 75 r19.21bi φ k ran F 0 j n vol F -1 k A n j n vol F -1 k A n j + 1
77 ovolss F -1 k A n F -1 k F -1 k vol * F -1 k A n vol * F -1 k
78 23 26 77 sylancr φ k ran F 0 n vol * F -1 k A n vol * F -1 k
79 78 22 28 3brtr4d φ k ran F 0 n vol F -1 k A n vol F -1 k
80 79 ralrimiva φ k ran F 0 n vol F -1 k A n vol F -1 k
81 59 breq1d j n vol F -1 k A n j vol F -1 k vol F -1 k A j vol F -1 k
82 81 ralbiia j n vol F -1 k A n j vol F -1 k j vol F -1 k A j vol F -1 k
83 56 breq1d n = j vol F -1 k A n vol F -1 k vol F -1 k A j vol F -1 k
84 83 cbvralvw n vol F -1 k A n vol F -1 k j vol F -1 k A j vol F -1 k
85 82 84 bitr4i j n vol F -1 k A n j vol F -1 k n vol F -1 k A n vol F -1 k
86 80 85 sylibr φ k ran F 0 j n vol F -1 k A n j vol F -1 k
87 brralrspcev vol F -1 k j n vol F -1 k A n j vol F -1 k x j n vol F -1 k A n j x
88 30 86 87 syl2anc φ k ran F 0 x j n vol F -1 k A n j x
89 6 13 36 76 88 climsup φ k ran F 0 n vol F -1 k A n sup ran n vol F -1 k A n <
90 20 fmpttd φ k ran F 0 n F -1 k A n : dom vol
91 39 ralrimiva φ k ran F 0 n F -1 k A n F -1 k A n + 1
92 eqid n F -1 k A n = n F -1 k A n
93 fvex A j V
94 93 inex2 F -1 k A j V
95 55 92 94 fvmpt j n F -1 k A n j = F -1 k A j
96 fvex A j + 1 V
97 96 inex2 F -1 k A j + 1 V
98 62 92 97 fvmpt j + 1 n F -1 k A n j + 1 = F -1 k A j + 1
99 60 98 syl j n F -1 k A n j + 1 = F -1 k A j + 1
100 95 99 sseq12d j n F -1 k A n j n F -1 k A n j + 1 F -1 k A j F -1 k A j + 1
101 100 ralbiia j n F -1 k A n j n F -1 k A n j + 1 j F -1 k A j F -1 k A j + 1
102 55 70 sseq12d n = j F -1 k A n F -1 k A n + 1 F -1 k A j F -1 k A j + 1
103 102 cbvralvw n F -1 k A n F -1 k A n + 1 j F -1 k A j F -1 k A j + 1
104 101 103 bitr4i j n F -1 k A n j n F -1 k A n j + 1 n F -1 k A n F -1 k A n + 1
105 91 104 sylibr φ k ran F 0 j n F -1 k A n j n F -1 k A n j + 1
106 volsup n F -1 k A n : dom vol j n F -1 k A n j n F -1 k A n j + 1 vol ran n F -1 k A n = sup vol ran n F -1 k A n * <
107 90 105 106 syl2anc φ k ran F 0 vol ran n F -1 k A n = sup vol ran n F -1 k A n * <
108 95 iuneq2i j n F -1 k A n j = j F -1 k A j
109 55 cbviunv n F -1 k A n = j F -1 k A j
110 iunin2 n F -1 k A n = F -1 k n A n
111 108 109 110 3eqtr2i j n F -1 k A n j = F -1 k n A n
112 ffn A : dom vol A Fn
113 fniunfv A Fn n A n = ran A
114 1 112 113 3syl φ n A n = ran A
115 114 3 eqtrd φ n A n =
116 115 adantr φ k ran F 0 n A n =
117 116 ineq2d φ k ran F 0 F -1 k n A n = F -1 k
118 15 adantr φ k ran F 0 F -1 k dom vol
119 118 25 syl φ k ran F 0 F -1 k
120 df-ss F -1 k F -1 k = F -1 k
121 119 120 sylib φ k ran F 0 F -1 k = F -1 k
122 117 121 eqtrd φ k ran F 0 F -1 k n A n = F -1 k
123 111 122 eqtrid φ k ran F 0 j n F -1 k A n j = F -1 k
124 ffn n F -1 k A n : dom vol n F -1 k A n Fn
125 fniunfv n F -1 k A n Fn j n F -1 k A n j = ran n F -1 k A n
126 90 124 125 3syl φ k ran F 0 j n F -1 k A n j = ran n F -1 k A n
127 123 126 eqtr3d φ k ran F 0 F -1 k = ran n F -1 k A n
128 127 fveq2d φ k ran F 0 vol F -1 k = vol ran n F -1 k A n
129 36 frnd φ k ran F 0 ran n vol F -1 k A n
130 36 fdmd φ k ran F 0 dom n vol F -1 k A n =
131 1nn 1
132 ne0i 1
133 131 132 mp1i φ k ran F 0
134 130 133 eqnetrd φ k ran F 0 dom n vol F -1 k A n
135 dm0rn0 dom n vol F -1 k A n = ran n vol F -1 k A n =
136 135 necon3bii dom n vol F -1 k A n ran n vol F -1 k A n
137 134 136 sylib φ k ran F 0 ran n vol F -1 k A n
138 ffn n vol F -1 k A n : n vol F -1 k A n Fn
139 breq1 z = n vol F -1 k A n j z x n vol F -1 k A n j x
140 139 ralrn n vol F -1 k A n Fn z ran n vol F -1 k A n z x j n vol F -1 k A n j x
141 36 138 140 3syl φ k ran F 0 z ran n vol F -1 k A n z x j n vol F -1 k A n j x
142 141 rexbidv φ k ran F 0 x z ran n vol F -1 k A n z x x j n vol F -1 k A n j x
143 88 142 mpbird φ k ran F 0 x z ran n vol F -1 k A n z x
144 supxrre ran n vol F -1 k A n ran n vol F -1 k A n x z ran n vol F -1 k A n z x sup ran n vol F -1 k A n * < = sup ran n vol F -1 k A n <
145 129 137 143 144 syl3anc φ k ran F 0 sup ran n vol F -1 k A n * < = sup ran n vol F -1 k A n <
146 volf vol : dom vol 0 +∞
147 146 a1i φ k ran F 0 vol : dom vol 0 +∞
148 147 20 cofmpt φ k ran F 0 vol n F -1 k A n = n vol F -1 k A n
149 148 rneqd φ k ran F 0 ran vol n F -1 k A n = ran n vol F -1 k A n
150 rnco2 ran vol n F -1 k A n = vol ran n F -1 k A n
151 149 150 eqtr3di φ k ran F 0 ran n vol F -1 k A n = vol ran n F -1 k A n
152 151 supeq1d φ k ran F 0 sup ran n vol F -1 k A n * < = sup vol ran n F -1 k A n * <
153 145 152 eqtr3d φ k ran F 0 sup ran n vol F -1 k A n < = sup vol ran n F -1 k A n * <
154 107 128 153 3eqtr4d φ k ran F 0 vol F -1 k = sup ran n vol F -1 k A n <
155 89 154 breqtrrd φ k ran F 0 n vol F -1 k A n vol F -1 k
156 i1ff F dom 1 F :
157 frn F : ran F
158 4 156 157 3syl φ ran F
159 158 ssdifssd φ ran F 0
160 159 sselda φ k ran F 0 k
161 160 recnd φ k ran F 0 k
162 nnex V
163 162 mptex n k vol F -1 k A n V
164 163 a1i φ k ran F 0 n k vol F -1 k A n V
165 36 ffvelrnda φ k ran F 0 j n vol F -1 k A n j
166 165 recnd φ k ran F 0 j n vol F -1 k A n j
167 56 oveq2d n = j k vol F -1 k A n = k vol F -1 k A j
168 eqid n k vol F -1 k A n = n k vol F -1 k A n
169 ovex k vol F -1 k A j V
170 167 168 169 fvmpt j n k vol F -1 k A n j = k vol F -1 k A j
171 59 oveq2d j k n vol F -1 k A n j = k vol F -1 k A j
172 170 171 eqtr4d j n k vol F -1 k A n j = k n vol F -1 k A n j
173 172 adantl φ k ran F 0 j n k vol F -1 k A n j = k n vol F -1 k A n j
174 6 13 155 161 164 166 173 climmulc2 φ k ran F 0 n k vol F -1 k A n k vol F -1 k
175 162 mptex n 1 G V
176 175 a1i φ n 1 G V
177 160 adantr φ k ran F 0 n k
178 177 35 remulcld φ k ran F 0 n k vol F -1 k A n
179 178 fmpttd φ k ran F 0 n k vol F -1 k A n :
180 179 ffvelrnda φ k ran F 0 j n k vol F -1 k A n j
181 180 recnd φ k ran F 0 j n k vol F -1 k A n j
182 181 anasss φ k ran F 0 j n k vol F -1 k A n j
183 4 adantr φ n F dom 1
184 5 i1fres F dom 1 A n dom vol G dom 1
185 183 17 184 syl2anc φ n G dom 1
186 12 adantr φ n ran F 0 Fin
187 ffn F : F Fn
188 4 156 187 3syl φ F Fn
189 188 adantr φ n F Fn
190 fnfvelrn F Fn x F x ran F
191 189 190 sylan φ n x F x ran F
192 i1f0rn F dom 1 0 ran F
193 4 192 syl φ 0 ran F
194 193 ad2antrr φ n x 0 ran F
195 191 194 ifcld φ n x if x A n F x 0 ran F
196 195 5 fmptd φ n G : ran F
197 frn G : ran F ran G ran F
198 ssdif ran G ran F ran G 0 ran F 0
199 196 197 198 3syl φ n ran G 0 ran F 0
200 158 adantr φ n ran F
201 200 ssdifd φ n ran F 0 0
202 itg1val2 G dom 1 ran F 0 Fin ran G 0 ran F 0 ran F 0 0 1 G = k ran F 0 k vol G -1 k
203 185 186 199 201 202 syl13anc φ n 1 G = k ran F 0 k vol G -1 k
204 fvex F x V
205 c0ex 0 V
206 204 205 ifex if x A n F x 0 V
207 5 fvmpt2 x if x A n F x 0 V G x = if x A n F x 0
208 206 207 mpan2 x G x = if x A n F x 0
209 208 adantl φ n k ran F 0 x G x = if x A n F x 0
210 209 eqeq1d φ n k ran F 0 x G x = k if x A n F x 0 = k
211 eldifsni k ran F 0 k 0
212 211 ad2antlr φ n k ran F 0 x k 0
213 neeq1 if x A n F x 0 = k if x A n F x 0 0 k 0
214 212 213 syl5ibrcom φ n k ran F 0 x if x A n F x 0 = k if x A n F x 0 0
215 iffalse ¬ x A n if x A n F x 0 = 0
216 215 necon1ai if x A n F x 0 0 x A n
217 214 216 syl6 φ n k ran F 0 x if x A n F x 0 = k x A n
218 217 pm4.71rd φ n k ran F 0 x if x A n F x 0 = k x A n if x A n F x 0 = k
219 210 218 bitrd φ n k ran F 0 x G x = k x A n if x A n F x 0 = k
220 iftrue x A n if x A n F x 0 = F x
221 220 eqeq1d x A n if x A n F x 0 = k F x = k
222 221 pm5.32i x A n if x A n F x 0 = k x A n F x = k
223 222 biancomi x A n if x A n F x 0 = k F x = k x A n
224 219 223 bitrdi φ n k ran F 0 x G x = k F x = k x A n
225 224 pm5.32da φ n k ran F 0 x G x = k x F x = k x A n
226 anass x F x = k x A n x F x = k x A n
227 225 226 bitr4di φ n k ran F 0 x G x = k x F x = k x A n
228 i1ff G dom 1 G :
229 ffn G : G Fn
230 185 228 229 3syl φ n G Fn
231 230 adantr φ n k ran F 0 G Fn
232 fniniseg G Fn x G -1 k x G x = k
233 231 232 syl φ n k ran F 0 x G -1 k x G x = k
234 elin x F -1 k A n x F -1 k x A n
235 189 adantr φ n k ran F 0 F Fn
236 fniniseg F Fn x F -1 k x F x = k
237 235 236 syl φ n k ran F 0 x F -1 k x F x = k
238 237 anbi1d φ n k ran F 0 x F -1 k x A n x F x = k x A n
239 234 238 syl5bb φ n k ran F 0 x F -1 k A n x F x = k x A n
240 227 233 239 3bitr4d φ n k ran F 0 x G -1 k x F -1 k A n
241 240 alrimiv φ n k ran F 0 x x G -1 k x F -1 k A n
242 nfmpt1 _ x x if x A n F x 0
243 5 242 nfcxfr _ x G
244 243 nfcnv _ x G -1
245 nfcv _ x k
246 244 245 nfima _ x G -1 k
247 nfcv _ x F -1 k A n
248 246 247 cleqf G -1 k = F -1 k A n x x G -1 k x F -1 k A n
249 241 248 sylibr φ n k ran F 0 G -1 k = F -1 k A n
250 249 fveq2d φ n k ran F 0 vol G -1 k = vol F -1 k A n
251 250 oveq2d φ n k ran F 0 k vol G -1 k = k vol F -1 k A n
252 251 sumeq2dv φ n k ran F 0 k vol G -1 k = k ran F 0 k vol F -1 k A n
253 203 252 eqtrd φ n 1 G = k ran F 0 k vol F -1 k A n
254 253 mpteq2dva φ n 1 G = n k ran F 0 k vol F -1 k A n
255 254 fveq1d φ n 1 G j = n k ran F 0 k vol F -1 k A n j
256 167 sumeq2sdv n = j k ran F 0 k vol F -1 k A n = k ran F 0 k vol F -1 k A j
257 eqid n k ran F 0 k vol F -1 k A n = n k ran F 0 k vol F -1 k A n
258 sumex k ran F 0 k vol F -1 k A j V
259 256 257 258 fvmpt j n k ran F 0 k vol F -1 k A n j = k ran F 0 k vol F -1 k A j
260 170 sumeq2sdv j k ran F 0 n k vol F -1 k A n j = k ran F 0 k vol F -1 k A j
261 259 260 eqtr4d j n k ran F 0 k vol F -1 k A n j = k ran F 0 n k vol F -1 k A n j
262 255 261 sylan9eq φ j n 1 G j = k ran F 0 n k vol F -1 k A n j
263 6 7 12 174 176 182 262 climfsum φ n 1 G k ran F 0 k vol F -1 k
264 itg1val F dom 1 1 F = k ran F 0 k vol F -1 k
265 4 264 syl φ 1 F = k ran F 0 k vol F -1 k
266 263 265 breqtrrd φ n 1 G 1 F