Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfi1fseq.1 | |
|
mbfi1fseq.2 | |
||
mbfi1fseq.3 | |
||
Assertion | mbfi1fseqlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfi1fseq.1 | |
|
2 | mbfi1fseq.2 | |
|
3 | mbfi1fseq.3 | |
|
4 | simpr | |
|
5 | ffvelcdm | |
|
6 | 2 4 5 | syl2an | |
7 | elrege0 | |
|
8 | 6 7 | sylib | |
9 | 8 | simpld | |
10 | 2nn | |
|
11 | nnnn0 | |
|
12 | nnexpcl | |
|
13 | 10 11 12 | sylancr | |
14 | 13 | ad2antrl | |
15 | 14 | nnred | |
16 | 9 15 | remulcld | |
17 | reflcl | |
|
18 | 16 17 | syl | |
19 | 18 14 | nndivred | |
20 | 14 | nnnn0d | |
21 | 20 | nn0ge0d | |
22 | mulge0 | |
|
23 | 8 15 21 22 | syl12anc | |
24 | flge0nn0 | |
|
25 | 16 23 24 | syl2anc | |
26 | 25 | nn0ge0d | |
27 | 14 | nngt0d | |
28 | divge0 | |
|
29 | 18 26 15 27 28 | syl22anc | |
30 | elrege0 | |
|
31 | 19 29 30 | sylanbrc | |
32 | 31 | ralrimivva | |
33 | 3 | fmpo | |
34 | 32 33 | sylib | |