Metamath Proof Explorer


Theorem mbfi1fseqlem1

Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φFMblFn
mbfi1fseq.2 φF:0+∞
mbfi1fseq.3 J=m,yFy2m2m
Assertion mbfi1fseqlem1 φJ:×0+∞

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φFMblFn
2 mbfi1fseq.2 φF:0+∞
3 mbfi1fseq.3 J=m,yFy2m2m
4 simpr myy
5 ffvelcdm F:0+∞yFy0+∞
6 2 4 5 syl2an φmyFy0+∞
7 elrege0 Fy0+∞Fy0Fy
8 6 7 sylib φmyFy0Fy
9 8 simpld φmyFy
10 2nn 2
11 nnnn0 mm0
12 nnexpcl 2m02m
13 10 11 12 sylancr m2m
14 13 ad2antrl φmy2m
15 14 nnred φmy2m
16 9 15 remulcld φmyFy2m
17 reflcl Fy2mFy2m
18 16 17 syl φmyFy2m
19 18 14 nndivred φmyFy2m2m
20 14 nnnn0d φmy2m0
21 20 nn0ge0d φmy02m
22 mulge0 Fy0Fy2m02m0Fy2m
23 8 15 21 22 syl12anc φmy0Fy2m
24 flge0nn0 Fy2m0Fy2mFy2m0
25 16 23 24 syl2anc φmyFy2m0
26 25 nn0ge0d φmy0Fy2m
27 14 nngt0d φmy0<2m
28 divge0 Fy2m0Fy2m2m0<2m0Fy2m2m
29 18 26 15 27 28 syl22anc φmy0Fy2m2m
30 elrege0 Fy2m2m0+∞Fy2m2m0Fy2m2m
31 19 29 30 sylanbrc φmyFy2m2m0+∞
32 31 ralrimivva φmyFy2m2m0+∞
33 3 fmpo myFy2m2m0+∞J:×0+∞
34 32 33 sylib φJ:×0+∞