| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2mulc.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
| 2 |
|
itg2mulc.3 |
|- ( ph -> ( S.2 ` F ) e. RR ) |
| 3 |
|
itg2mulclem.4 |
|- ( ph -> A e. RR+ ) |
| 4 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 5 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
| 6 |
1 4 5
|
sylancl |
|- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> F : RR --> ( 0 [,] +oo ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ f e. dom S.1 ) -> f e. dom S.1 ) |
| 9 |
3
|
rpreccld |
|- ( ph -> ( 1 / A ) e. RR+ ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> ( 1 / A ) e. RR+ ) |
| 11 |
10
|
rpred |
|- ( ( ph /\ f e. dom S.1 ) -> ( 1 / A ) e. RR ) |
| 12 |
8 11
|
i1fmulc |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 ) |
| 13 |
|
itg2ub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) |
| 14 |
13
|
3expia |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) |
| 15 |
7 12 14
|
syl2anc |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) |
| 16 |
|
i1ff |
|- ( f e. dom S.1 -> f : RR --> RR ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ f e. dom S.1 ) -> f : RR --> RR ) |
| 18 |
17
|
ffvelcdmda |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( f ` y ) e. RR ) |
| 19 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 20 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
| 21 |
1 19 20
|
sylancl |
|- ( ph -> F : RR --> RR ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> F : RR --> RR ) |
| 23 |
22
|
ffvelcdmda |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( F ` y ) e. RR ) |
| 24 |
3
|
rpred |
|- ( ph -> A e. RR ) |
| 25 |
24
|
ad2antrr |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. RR ) |
| 26 |
3
|
rpgt0d |
|- ( ph -> 0 < A ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> 0 < A ) |
| 28 |
|
ledivmul |
|- ( ( ( f ` y ) e. RR /\ ( F ` y ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) |
| 29 |
18 23 25 27 28
|
syl112anc |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) |
| 30 |
18
|
recnd |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( f ` y ) e. CC ) |
| 31 |
25
|
recnd |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. CC ) |
| 32 |
3
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> A e. RR+ ) |
| 33 |
32
|
rpne0d |
|- ( ( ph /\ f e. dom S.1 ) -> A =/= 0 ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A =/= 0 ) |
| 35 |
30 31 34
|
divrec2d |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( f ` y ) / A ) = ( ( 1 / A ) x. ( f ` y ) ) ) |
| 36 |
35
|
breq1d |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 37 |
29 36
|
bitr3d |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( f ` y ) <_ ( A x. ( F ` y ) ) <-> ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 38 |
37
|
ralbidva |
|- ( ( ph /\ f e. dom S.1 ) -> ( A. y e. RR ( f ` y ) <_ ( A x. ( F ` y ) ) <-> A. y e. RR ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 39 |
|
reex |
|- RR e. _V |
| 40 |
39
|
a1i |
|- ( ( ph /\ f e. dom S.1 ) -> RR e. _V ) |
| 41 |
|
ovexd |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. _V ) |
| 42 |
17
|
feqmptd |
|- ( ( ph /\ f e. dom S.1 ) -> f = ( y e. RR |-> ( f ` y ) ) ) |
| 43 |
3
|
ad2antrr |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. RR+ ) |
| 44 |
|
fconstmpt |
|- ( RR X. { A } ) = ( y e. RR |-> A ) |
| 45 |
44
|
a1i |
|- ( ( ph /\ f e. dom S.1 ) -> ( RR X. { A } ) = ( y e. RR |-> A ) ) |
| 46 |
1
|
feqmptd |
|- ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 48 |
40 43 23 45 47
|
offval2 |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { A } ) oF x. F ) = ( y e. RR |-> ( A x. ( F ` y ) ) ) ) |
| 49 |
40 18 41 42 48
|
ofrfval2 |
|- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) |
| 50 |
|
ovexd |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( 1 / A ) x. ( f ` y ) ) e. _V ) |
| 51 |
9
|
ad2antrr |
|- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( 1 / A ) e. RR+ ) |
| 52 |
|
fconstmpt |
|- ( RR X. { ( 1 / A ) } ) = ( y e. RR |-> ( 1 / A ) ) |
| 53 |
52
|
a1i |
|- ( ( ph /\ f e. dom S.1 ) -> ( RR X. { ( 1 / A ) } ) = ( y e. RR |-> ( 1 / A ) ) ) |
| 54 |
40 51 18 53 42
|
offval2 |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { ( 1 / A ) } ) oF x. f ) = ( y e. RR |-> ( ( 1 / A ) x. ( f ` y ) ) ) ) |
| 55 |
40 50 23 54 47
|
ofrfval2 |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F <-> A. y e. RR ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 56 |
38 49 55
|
3bitr4d |
|- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) <-> ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F ) ) |
| 57 |
8 11
|
itg1mulc |
|- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) = ( ( 1 / A ) x. ( S.1 ` f ) ) ) |
| 58 |
|
itg1cl |
|- ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` f ) e. RR ) |
| 60 |
59
|
recnd |
|- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` f ) e. CC ) |
| 61 |
24
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> A e. RR ) |
| 62 |
61
|
recnd |
|- ( ( ph /\ f e. dom S.1 ) -> A e. CC ) |
| 63 |
60 62 33
|
divrec2d |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` f ) / A ) = ( ( 1 / A ) x. ( S.1 ` f ) ) ) |
| 64 |
57 63
|
eqtr4d |
|- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) = ( ( S.1 ` f ) / A ) ) |
| 65 |
64
|
breq1d |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) <-> ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) ) ) |
| 66 |
2
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> ( S.2 ` F ) e. RR ) |
| 67 |
26
|
adantr |
|- ( ( ph /\ f e. dom S.1 ) -> 0 < A ) |
| 68 |
|
ledivmul |
|- ( ( ( S.1 ` f ) e. RR /\ ( S.2 ` F ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) <-> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 69 |
59 66 61 67 68
|
syl112anc |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) <-> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 70 |
65 69
|
bitr2d |
|- ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) <-> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) |
| 71 |
15 56 70
|
3imtr4d |
|- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 72 |
71
|
ralrimiva |
|- ( ph -> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 73 |
|
ge0mulcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 74 |
73
|
adantl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 75 |
|
fconstg |
|- ( A e. RR+ -> ( RR X. { A } ) : RR --> { A } ) |
| 76 |
3 75
|
syl |
|- ( ph -> ( RR X. { A } ) : RR --> { A } ) |
| 77 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 78 |
|
rpge0 |
|- ( A e. RR+ -> 0 <_ A ) |
| 79 |
|
elrege0 |
|- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
| 80 |
77 78 79
|
sylanbrc |
|- ( A e. RR+ -> A e. ( 0 [,) +oo ) ) |
| 81 |
3 80
|
syl |
|- ( ph -> A e. ( 0 [,) +oo ) ) |
| 82 |
81
|
snssd |
|- ( ph -> { A } C_ ( 0 [,) +oo ) ) |
| 83 |
76 82
|
fssd |
|- ( ph -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) |
| 84 |
39
|
a1i |
|- ( ph -> RR e. _V ) |
| 85 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 86 |
74 83 1 84 84 85
|
off |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) |
| 87 |
|
fss |
|- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
| 88 |
86 4 87
|
sylancl |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
| 89 |
24 2
|
remulcld |
|- ( ph -> ( A x. ( S.2 ` F ) ) e. RR ) |
| 90 |
89
|
rexrd |
|- ( ph -> ( A x. ( S.2 ` F ) ) e. RR* ) |
| 91 |
|
itg2leub |
|- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) /\ ( A x. ( S.2 ` F ) ) e. RR* ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) <-> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) ) |
| 92 |
88 90 91
|
syl2anc |
|- ( ph -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) <-> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) ) |
| 93 |
72 92
|
mpbird |
|- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) |