Metamath Proof Explorer


Theorem itg2eqa

Description: Approximate equality of integrals. If F = G for almost all x , then S.2 F = S.2 G . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses itg2lea.1 φF:0+∞
itg2lea.2 φG:0+∞
itg2lea.3 φA
itg2lea.4 φvol*A=0
itg2eqa.5 φxAFx=Gx
Assertion itg2eqa φ2F=2G

Proof

Step Hyp Ref Expression
1 itg2lea.1 φF:0+∞
2 itg2lea.2 φG:0+∞
3 itg2lea.3 φA
4 itg2lea.4 φvol*A=0
5 itg2eqa.5 φxAFx=Gx
6 itg2cl F:0+∞2F*
7 1 6 syl φ2F*
8 itg2cl G:0+∞2G*
9 2 8 syl φ2G*
10 iccssxr 0+∞*
11 eldifi xAx
12 ffvelcdm F:0+∞xFx0+∞
13 1 11 12 syl2an φxAFx0+∞
14 10 13 sselid φxAFx*
15 14 xrleidd φxAFxFx
16 15 5 breqtrd φxAFxGx
17 1 2 3 4 16 itg2lea φ2F2G
18 5 15 eqbrtrrd φxAGxFx
19 2 1 3 4 18 itg2lea φ2G2F
20 7 9 17 19 xrletrid φ2F=2G