| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 2 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 |
|
kgentopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 6 |
|
kgenss |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 8 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 9 |
8
|
cnss1 |
⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ) |
| 10 |
5 7 9
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ) |
| 11 |
|
kgenf |
⊢ 𝑘Gen : Top ⟶ Top |
| 12 |
|
ffn |
⊢ ( 𝑘Gen : Top ⟶ Top → 𝑘Gen Fn Top ) |
| 13 |
11 12
|
ax-mp |
⊢ 𝑘Gen Fn Top |
| 14 |
|
fnfvelrn |
⊢ ( ( 𝑘Gen Fn Top ∧ 𝐽 ∈ Top ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
| 15 |
13 1 14
|
sylancr |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
| 16 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 17 |
|
kgencn3 |
⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 18 |
15 16 17
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 19 |
10 18
|
sseqtrd |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 Cn 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 20 |
|
id |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 21 |
19 20
|
sseldd |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |