| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 2 |
|
lanpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 3 |
|
lanpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
|
lanpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
lanpropd.5 |
⊢ ( 𝜑 → ( Homf ‘ 𝐸 ) = ( Homf ‘ 𝐹 ) ) |
| 6 |
|
lanpropd.6 |
⊢ ( 𝜑 → ( compf ‘ 𝐸 ) = ( compf ‘ 𝐹 ) ) |
| 7 |
|
lanpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 8 |
|
lanpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 9 |
|
lanpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 10 |
|
lanpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 11 |
|
lanpropd.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 12 |
|
lanpropd.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 13 |
1 2 3 4 7 8 9 10
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 14 |
1 2 5 6 7 8 11 12
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐸 ) = ( 𝐵 Func 𝐹 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 𝐴 Func 𝐸 ) = ( 𝐵 Func 𝐹 ) ) |
| 16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( Homf ‘ 𝐸 ) = ( Homf ‘ 𝐹 ) ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( compf ‘ 𝐸 ) = ( compf ‘ 𝐹 ) ) |
| 20 |
|
funcrcl |
⊢ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
| 21 |
20
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
| 22 |
21
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐶 ∈ Cat ) |
| 23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐷 ∈ 𝑉 ) |
| 24 |
16 17 22 23
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 25 |
22 24
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐷 ∈ Cat ) |
| 26 |
|
funcrcl |
⊢ ( 𝑥 ∈ ( 𝐴 Func 𝐸 ) → ( 𝐴 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 27 |
26
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐴 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 28 |
27
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐸 ∈ Cat ) |
| 29 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐹 ∈ 𝑉 ) |
| 30 |
18 19 28 29
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐸 ∈ Cat ↔ 𝐹 ∈ Cat ) ) |
| 31 |
28 30
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐹 ∈ Cat ) |
| 32 |
16 17 18 19 22 25 28 31
|
fucpropd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐶 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐹 ) ) |
| 33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 34 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 35 |
21
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐴 ∈ Cat ) |
| 36 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐵 ∈ 𝑉 ) |
| 37 |
33 34 35 36
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐴 ∈ Cat ↔ 𝐵 ∈ Cat ) ) |
| 38 |
35 37
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝐵 ∈ Cat ) |
| 39 |
33 34 18 19 35 38 28 31
|
fucpropd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 𝐴 FuncCat 𝐸 ) = ( 𝐵 FuncCat 𝐹 ) ) |
| 40 |
32 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( ( 𝐶 FuncCat 𝐸 ) UP ( 𝐴 FuncCat 𝐸 ) ) = ( ( 𝐷 FuncCat 𝐹 ) UP ( 𝐵 FuncCat 𝐹 ) ) ) |
| 41 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) |
| 42 |
16 17 18 19 22 25 28 31 41
|
prcofpropd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( 〈 𝐶 , 𝐸 〉 −∘F 𝑓 ) = ( 〈 𝐷 , 𝐹 〉 −∘F 𝑓 ) ) |
| 43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → 𝑥 = 𝑥 ) |
| 44 |
40 42 43
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 Func 𝐸 ) ) ) → ( ( 〈 𝐶 , 𝐸 〉 −∘F 𝑓 ) ( ( 𝐶 FuncCat 𝐸 ) UP ( 𝐴 FuncCat 𝐸 ) ) 𝑥 ) = ( ( 〈 𝐷 , 𝐹 〉 −∘F 𝑓 ) ( ( 𝐷 FuncCat 𝐹 ) UP ( 𝐵 FuncCat 𝐹 ) ) 𝑥 ) ) |
| 45 |
13 15 44
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑥 ∈ ( 𝐴 Func 𝐸 ) ↦ ( ( 〈 𝐶 , 𝐸 〉 −∘F 𝑓 ) ( ( 𝐶 FuncCat 𝐸 ) UP ( 𝐴 FuncCat 𝐸 ) ) 𝑥 ) ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑥 ∈ ( 𝐵 Func 𝐹 ) ↦ ( ( 〈 𝐷 , 𝐹 〉 −∘F 𝑓 ) ( ( 𝐷 FuncCat 𝐹 ) UP ( 𝐵 FuncCat 𝐹 ) ) 𝑥 ) ) ) |
| 46 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 47 |
|
eqid |
⊢ ( 𝐴 FuncCat 𝐸 ) = ( 𝐴 FuncCat 𝐸 ) |
| 48 |
46 47 7 9 11
|
lanfval |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 Lan 𝐸 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑥 ∈ ( 𝐴 Func 𝐸 ) ↦ ( ( 〈 𝐶 , 𝐸 〉 −∘F 𝑓 ) ( ( 𝐶 FuncCat 𝐸 ) UP ( 𝐴 FuncCat 𝐸 ) ) 𝑥 ) ) ) |
| 49 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐹 ) = ( 𝐷 FuncCat 𝐹 ) |
| 50 |
|
eqid |
⊢ ( 𝐵 FuncCat 𝐹 ) = ( 𝐵 FuncCat 𝐹 ) |
| 51 |
49 50 8 10 12
|
lanfval |
⊢ ( 𝜑 → ( 〈 𝐵 , 𝐷 〉 Lan 𝐹 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑥 ∈ ( 𝐵 Func 𝐹 ) ↦ ( ( 〈 𝐷 , 𝐹 〉 −∘F 𝑓 ) ( ( 𝐷 FuncCat 𝐹 ) UP ( 𝐵 FuncCat 𝐹 ) ) 𝑥 ) ) ) |
| 52 |
45 48 51
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 Lan 𝐸 ) = ( 〈 𝐵 , 𝐷 〉 Lan 𝐹 ) ) |