Metamath Proof Explorer


Theorem latj31

Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in MegPav2002 p. 362. (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses latjass.b 𝐵 = ( Base ‘ 𝐾 )
latjass.j = ( join ‘ 𝐾 )
Assertion latj31 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑍 𝑌 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 latjass.b 𝐵 = ( Base ‘ 𝐾 )
2 latjass.j = ( join ‘ 𝐾 )
3 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
4 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
5 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
6 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
7 1 2 latj12 ( ( 𝐾 ∈ Lat ∧ ( 𝑍𝐵𝑋𝐵𝑌𝐵 ) ) → ( 𝑍 ( 𝑋 𝑌 ) ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
8 3 4 5 6 7 syl13anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 ( 𝑋 𝑌 ) ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
9 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
10 9 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
11 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑍𝐵 ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑍 ( 𝑋 𝑌 ) ) )
12 3 10 4 11 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑍 ( 𝑋 𝑌 ) ) )
13 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵 ) → ( 𝑍 𝑌 ) ∈ 𝐵 )
14 3 4 6 13 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 𝑌 ) ∈ 𝐵 )
15 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ ( 𝑍 𝑌 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝑍 𝑌 ) 𝑋 ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
16 3 14 5 15 syl3anc ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑍 𝑌 ) 𝑋 ) = ( 𝑋 ( 𝑍 𝑌 ) ) )
17 8 12 16 3eqtr4d ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑍 𝑌 ) 𝑋 ) )