| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbslelsp.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
lbslelsp.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
| 3 |
|
lbslelsp.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lbslelsp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lbslelsp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 6 |
|
lbslelsp.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐵 ) |
| 7 |
|
lbslelsp.1 |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑌 ) = 𝐵 ) |
| 8 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → 𝑊 ∈ LVec ) |
| 9 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → 𝑋 ∈ 𝐽 ) |
| 10 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → 𝑠 ∈ 𝐽 ) |
| 11 |
2
|
lvecdim |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → 𝑋 ≈ 𝑠 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → 𝑋 ≈ 𝑠 ) |
| 13 |
|
hasheni |
⊢ ( 𝑋 ≈ 𝑠 → ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑠 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑠 ) ) |
| 15 |
|
hashss |
⊢ ( ( 𝑌 ∈ Fin ∧ 𝑠 ⊆ 𝑌 ) → ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ 𝑌 ) ) |
| 16 |
15
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ 𝑌 ) ) |
| 17 |
14 16
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ Fin ) ∧ 𝑠 ∈ 𝐽 ) ∧ 𝑠 ⊆ 𝑌 ) → ( ♯ ‘ 𝑋 ) ≤ ( ♯ ‘ 𝑌 ) ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ Fin ) → 𝑊 ∈ LVec ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ Fin ) → 𝑌 ∈ Fin ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ Fin ) → 𝑌 ⊆ 𝐵 ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ Fin ) → ( 𝐾 ‘ 𝑌 ) = 𝐵 ) |
| 22 |
1 2 3 18 19 20 21
|
exsslsb |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ Fin ) → ∃ 𝑠 ∈ 𝐽 𝑠 ⊆ 𝑌 ) |
| 23 |
17 22
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ≤ ( ♯ ‘ 𝑌 ) ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ Fin ) → 𝑋 ∈ 𝐽 ) |
| 25 |
|
hashxrcl |
⊢ ( 𝑋 ∈ 𝐽 → ( ♯ ‘ 𝑋 ) ∈ ℝ* ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ∈ ℝ* ) |
| 27 |
26
|
pnfged |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ≤ +∞ ) |
| 28 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 30 |
29 6
|
ssexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 31 |
|
hashinf |
⊢ ( ( 𝑌 ∈ V ∧ ¬ 𝑌 ∈ Fin ) → ( ♯ ‘ 𝑌 ) = +∞ ) |
| 32 |
30 31
|
sylan |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ Fin ) → ( ♯ ‘ 𝑌 ) = +∞ ) |
| 33 |
27 32
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ≤ ( ♯ ‘ 𝑌 ) ) |
| 34 |
23 33
|
pm2.61dan |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ≤ ( ♯ ‘ 𝑌 ) ) |