| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exsslsb.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
exsslsb.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
| 3 |
|
exsslsb.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
exsslsb.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
exsslsb.s |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 6 |
|
exsslsb.1 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 7 |
|
exsslsb.2 |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑆 ) = 𝐵 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
| 9 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑊 ∈ LVec ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) |
| 11 |
10
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ∈ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) |
| 12 |
11
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ∈ 𝒫 𝑆 ) |
| 13 |
12
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ⊆ 𝑆 ) |
| 14 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑆 ⊆ 𝐵 ) |
| 15 |
13 14
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ⊆ 𝐵 ) |
| 16 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 18 |
1 17 3
|
lspf |
⊢ ( 𝑊 ∈ LMod → 𝐾 : 𝒫 𝐵 ⟶ ( LSubSp ‘ 𝑊 ) ) |
| 19 |
4 16 18
|
3syl |
⊢ ( 𝜑 → 𝐾 : 𝒫 𝐵 ⟶ ( LSubSp ‘ 𝑊 ) ) |
| 20 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐾 Fn 𝒫 𝐵 ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝐾 Fn 𝒫 𝐵 ) |
| 22 |
11
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ∈ ( ◡ 𝐾 “ { 𝐵 } ) ) |
| 23 |
|
fniniseg |
⊢ ( 𝐾 Fn 𝒫 𝐵 → ( 𝑠 ∈ ( ◡ 𝐾 “ { 𝐵 } ) ↔ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( 𝐾 ‘ 𝑠 ) = 𝐵 ) ) ) |
| 24 |
23
|
simplbda |
⊢ ( ( 𝐾 Fn 𝒫 𝐵 ∧ 𝑠 ∈ ( ◡ 𝐾 “ { 𝐵 } ) ) → ( 𝐾 ‘ 𝑠 ) = 𝐵 ) |
| 25 |
21 22 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → ( 𝐾 ‘ 𝑠 ) = 𝐵 ) |
| 26 |
4 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑊 ∈ LMod ) |
| 28 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑢 ⊊ 𝑠 ) |
| 29 |
28
|
pssssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑢 ⊆ 𝑠 ) |
| 30 |
13
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑠 ⊆ 𝑆 ) |
| 31 |
29 30
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑢 ⊆ 𝑆 ) |
| 32 |
14
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑆 ⊆ 𝐵 ) |
| 33 |
31 32
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑢 ⊆ 𝐵 ) |
| 34 |
1 3
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑢 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑢 ) ⊆ 𝐵 ) |
| 35 |
27 33 34
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → ( 𝐾 ‘ 𝑢 ) ⊆ 𝐵 ) |
| 36 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 37 |
|
ffun |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → Fun ♯ ) |
| 38 |
36 37
|
mp1i |
⊢ ( 𝜑 → Fun ♯ ) |
| 39 |
|
pwssfi |
⊢ ( 𝑆 ∈ Fin → ( 𝑆 ∈ Fin ↔ 𝒫 𝑆 ⊆ Fin ) ) |
| 40 |
39
|
ibi |
⊢ ( 𝑆 ∈ Fin → 𝒫 𝑆 ⊆ Fin ) |
| 41 |
5 40
|
syl |
⊢ ( 𝜑 → 𝒫 𝑆 ⊆ Fin ) |
| 42 |
41
|
ssinss1d |
⊢ ( 𝜑 → ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ⊆ Fin ) |
| 43 |
42
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) → 𝑠 ∈ Fin ) |
| 44 |
|
hashcl |
⊢ ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 46 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 47 |
45 46
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) → ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 48 |
8 38 47
|
funimassd |
⊢ ( 𝜑 → ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 49 |
48
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 50 |
36
|
a1i |
⊢ ( 𝜑 → ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 51 |
50
|
ffnd |
⊢ ( 𝜑 → ♯ Fn V ) |
| 52 |
51
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → ♯ Fn V ) |
| 53 |
52
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ♯ Fn V ) |
| 54 |
|
vex |
⊢ 𝑢 ∈ V |
| 55 |
54
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ∈ V ) |
| 56 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑆 ∈ Fin ) |
| 57 |
56 31
|
sselpwd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑢 ∈ 𝒫 𝑆 ) |
| 58 |
57
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ∈ 𝒫 𝑆 ) |
| 59 |
21
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝐾 Fn 𝒫 𝐵 ) |
| 60 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 61 |
60
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝐵 ∈ V ) |
| 62 |
61 33
|
sselpwd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑢 ∈ 𝒫 𝐵 ) |
| 63 |
62
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ∈ 𝒫 𝐵 ) |
| 64 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( 𝐾 ‘ 𝑢 ) = 𝐵 ) |
| 65 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑢 ) ∈ V |
| 66 |
65
|
elsn |
⊢ ( ( 𝐾 ‘ 𝑢 ) ∈ { 𝐵 } ↔ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) |
| 67 |
64 66
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( 𝐾 ‘ 𝑢 ) ∈ { 𝐵 } ) |
| 68 |
59 63 67
|
elpreimad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ∈ ( ◡ 𝐾 “ { 𝐵 } ) ) |
| 69 |
58 68
|
elind |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ∈ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) |
| 70 |
53 55 69
|
fnfvimad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑢 ) ∈ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) |
| 71 |
|
infssuzle |
⊢ ( ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ⊆ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑢 ) ∈ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) → inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ≤ ( ♯ ‘ 𝑢 ) ) |
| 72 |
49 70 71
|
syl2an2r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ≤ ( ♯ ‘ 𝑢 ) ) |
| 73 |
56 30
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → 𝑠 ∈ Fin ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑠 ∈ Fin ) |
| 75 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ⊊ 𝑠 ) |
| 76 |
|
hashpss |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑢 ⊊ 𝑠 ) → ( ♯ ‘ 𝑢 ) < ( ♯ ‘ 𝑠 ) ) |
| 77 |
74 75 76
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑢 ) < ( ♯ ‘ 𝑠 ) ) |
| 78 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) |
| 79 |
77 78
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑢 ) < inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) |
| 80 |
29
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ⊆ 𝑠 ) |
| 81 |
74 80
|
ssfid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → 𝑢 ∈ Fin ) |
| 82 |
|
hashcl |
⊢ ( 𝑢 ∈ Fin → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
| 83 |
81 82
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
| 84 |
83
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑢 ) ∈ ℝ ) |
| 85 |
74 44
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 86 |
85
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ♯ ‘ 𝑠 ) ∈ ℝ ) |
| 87 |
78 86
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ∈ ℝ ) |
| 88 |
84 87
|
ltnled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ( ( ♯ ‘ 𝑢 ) < inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ↔ ¬ inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ≤ ( ♯ ‘ 𝑢 ) ) ) |
| 89 |
79 88
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) ∧ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) → ¬ inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ≤ ( ♯ ‘ 𝑢 ) ) |
| 90 |
72 89
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → ¬ ( 𝐾 ‘ 𝑢 ) = 𝐵 ) |
| 91 |
90
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → ( 𝐾 ‘ 𝑢 ) ≠ 𝐵 ) |
| 92 |
|
df-pss |
⊢ ( ( 𝐾 ‘ 𝑢 ) ⊊ 𝐵 ↔ ( ( 𝐾 ‘ 𝑢 ) ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑢 ) ≠ 𝐵 ) ) |
| 93 |
35 91 92
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) ∧ 𝑢 ⊊ 𝑠 ) → ( 𝐾 ‘ 𝑢 ) ⊊ 𝐵 ) |
| 94 |
93
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → ( 𝑢 ⊊ 𝑠 → ( 𝐾 ‘ 𝑢 ) ⊊ 𝐵 ) ) |
| 95 |
94
|
alrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → ∀ 𝑢 ( 𝑢 ⊊ 𝑠 → ( 𝐾 ‘ 𝑢 ) ⊊ 𝐵 ) ) |
| 96 |
1 2 3
|
islbs3 |
⊢ ( 𝑊 ∈ LVec → ( 𝑠 ∈ 𝐽 ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑠 ) = 𝐵 ∧ ∀ 𝑢 ( 𝑢 ⊊ 𝑠 → ( 𝐾 ‘ 𝑢 ) ⊊ 𝐵 ) ) ) ) |
| 97 |
96
|
biimpar |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑠 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑠 ) = 𝐵 ∧ ∀ 𝑢 ( 𝑢 ⊊ 𝑠 → ( 𝐾 ‘ 𝑢 ) ⊊ 𝐵 ) ) ) → 𝑠 ∈ 𝐽 ) |
| 98 |
9 15 25 95 97
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) ∧ ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) → 𝑠 ∈ 𝐽 ) |
| 99 |
5
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 100 |
|
pwidg |
⊢ ( 𝑆 ∈ Fin → 𝑆 ∈ 𝒫 𝑆 ) |
| 101 |
5 100
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝑆 ) |
| 102 |
5 6
|
elpwd |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
| 103 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑆 ) ∈ V |
| 104 |
103
|
elsn |
⊢ ( ( 𝐾 ‘ 𝑆 ) ∈ { 𝐵 } ↔ ( 𝐾 ‘ 𝑆 ) = 𝐵 ) |
| 105 |
7 104
|
sylibr |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑆 ) ∈ { 𝐵 } ) |
| 106 |
20 102 105
|
elpreimad |
⊢ ( 𝜑 → 𝑆 ∈ ( ◡ 𝐾 “ { 𝐵 } ) ) |
| 107 |
101 106
|
elind |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) |
| 108 |
51 99 107
|
fnfvimad |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) |
| 109 |
108
|
ne0d |
⊢ ( 𝜑 → ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ≠ ∅ ) |
| 110 |
|
infssuzcl |
⊢ ( ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ⊆ ( ℤ≥ ‘ 0 ) ∧ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ≠ ∅ ) → inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ∈ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) |
| 111 |
48 109 110
|
syl2anc |
⊢ ( 𝜑 → inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ∈ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) |
| 112 |
|
fvelima2 |
⊢ ( ( ♯ Fn V ∧ inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ∈ ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ) → ∃ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) |
| 113 |
51 111 112
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ( V ∩ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) ( ♯ ‘ 𝑠 ) = inf ( ( ♯ “ ( 𝒫 𝑆 ∩ ( ◡ 𝐾 “ { 𝐵 } ) ) ) , ℝ , < ) ) |
| 114 |
8 98 13 113
|
reximd2a |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐽 𝑠 ⊆ 𝑆 ) |