Metamath Proof Explorer


Theorem hashpss

Description: The size of a proper subset is less than the size of its finite superset. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Assertion hashpss ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐴 ∈ Fin )
2 simpr ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵𝐴 )
3 2 pssssd ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵𝐴 )
4 1 3 ssexd ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵 ∈ V )
5 hashxrcl ( 𝐵 ∈ V → ( ♯ ‘ 𝐵 ) ∈ ℝ* )
6 4 5 syl ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℝ* )
7 hashxrcl ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
8 7 adantr ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
9 hashss ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) )
10 3 9 syldan ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) )
11 1 adantr ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 ∈ Fin )
12 3 adantr ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵𝐴 )
13 11 12 ssfid ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin )
14 simpr ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
15 hashen ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
16 15 biimpa ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴𝐵 )
17 11 13 14 16 syl21anc ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴𝐵 )
18 17 ensymd ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵𝐴 )
19 fisseneq ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴𝐵𝐴 ) → 𝐵 = 𝐴 )
20 11 12 18 19 syl3anc ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 = 𝐴 )
21 2 adantr ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵𝐴 )
22 21 pssned ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵𝐴 )
23 22 neneqd ( ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ¬ 𝐵 = 𝐴 )
24 20 23 pm2.65da ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ¬ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
25 24 neqned ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐴 ) ≠ ( ♯ ‘ 𝐵 ) )
26 xrltlen ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) → ( ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ↔ ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ ( ♯ ‘ 𝐵 ) ) ) )
27 26 biimpar ( ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) ∧ ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) )
28 6 8 10 25 27 syl22anc ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) )