| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐴 ∈ Fin ) |
| 2 |
|
simpr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ⊊ 𝐴 ) |
| 3 |
2
|
pssssd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 4 |
1 3
|
ssexd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ V ) |
| 5 |
|
hashxrcl |
⊢ ( 𝐵 ∈ V → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
| 7 |
|
hashxrcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 9 |
|
hashss |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 10 |
3 9
|
syldan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 ∈ Fin ) |
| 12 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ⊆ 𝐴 ) |
| 13 |
11 12
|
ssfid |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 15 |
|
hashen |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 ≈ 𝐵 ) |
| 17 |
11 13 14 16
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 ≈ 𝐵 ) |
| 18 |
17
|
ensymd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ≈ 𝐴 ) |
| 19 |
|
fisseneq |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≈ 𝐴 ) → 𝐵 = 𝐴 ) |
| 20 |
11 12 18 19
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 = 𝐴 ) |
| 21 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ⊊ 𝐴 ) |
| 22 |
21
|
pssned |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ≠ 𝐴 ) |
| 23 |
22
|
neneqd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ¬ 𝐵 = 𝐴 ) |
| 24 |
20 23
|
pm2.65da |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 25 |
24
|
neqned |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ( ♯ ‘ 𝐴 ) ≠ ( ♯ ‘ 𝐵 ) ) |
| 26 |
|
xrltlen |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) → ( ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ↔ ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ ( ♯ ‘ 𝐵 ) ) ) ) |
| 27 |
26
|
biimpar |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) ∧ ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ) |
| 28 |
6 8 10 25 27
|
syl22anc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ) |