| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. Fin /\ B C. A ) -> A e. Fin ) |
| 2 |
|
simpr |
|- ( ( A e. Fin /\ B C. A ) -> B C. A ) |
| 3 |
2
|
pssssd |
|- ( ( A e. Fin /\ B C. A ) -> B C_ A ) |
| 4 |
1 3
|
ssexd |
|- ( ( A e. Fin /\ B C. A ) -> B e. _V ) |
| 5 |
|
hashxrcl |
|- ( B e. _V -> ( # ` B ) e. RR* ) |
| 6 |
4 5
|
syl |
|- ( ( A e. Fin /\ B C. A ) -> ( # ` B ) e. RR* ) |
| 7 |
|
hashxrcl |
|- ( A e. Fin -> ( # ` A ) e. RR* ) |
| 8 |
7
|
adantr |
|- ( ( A e. Fin /\ B C. A ) -> ( # ` A ) e. RR* ) |
| 9 |
|
hashss |
|- ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) <_ ( # ` A ) ) |
| 10 |
3 9
|
syldan |
|- ( ( A e. Fin /\ B C. A ) -> ( # ` B ) <_ ( # ` A ) ) |
| 11 |
1
|
adantr |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> A e. Fin ) |
| 12 |
3
|
adantr |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> B C_ A ) |
| 13 |
11 12
|
ssfid |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> B e. Fin ) |
| 14 |
|
simpr |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> ( # ` A ) = ( # ` B ) ) |
| 15 |
|
hashen |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
| 16 |
15
|
biimpa |
|- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) = ( # ` B ) ) -> A ~~ B ) |
| 17 |
11 13 14 16
|
syl21anc |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> A ~~ B ) |
| 18 |
17
|
ensymd |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> B ~~ A ) |
| 19 |
|
fisseneq |
|- ( ( A e. Fin /\ B C_ A /\ B ~~ A ) -> B = A ) |
| 20 |
11 12 18 19
|
syl3anc |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> B = A ) |
| 21 |
2
|
adantr |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> B C. A ) |
| 22 |
21
|
pssned |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> B =/= A ) |
| 23 |
22
|
neneqd |
|- ( ( ( A e. Fin /\ B C. A ) /\ ( # ` A ) = ( # ` B ) ) -> -. B = A ) |
| 24 |
20 23
|
pm2.65da |
|- ( ( A e. Fin /\ B C. A ) -> -. ( # ` A ) = ( # ` B ) ) |
| 25 |
24
|
neqned |
|- ( ( A e. Fin /\ B C. A ) -> ( # ` A ) =/= ( # ` B ) ) |
| 26 |
|
xrltlen |
|- ( ( ( # ` B ) e. RR* /\ ( # ` A ) e. RR* ) -> ( ( # ` B ) < ( # ` A ) <-> ( ( # ` B ) <_ ( # ` A ) /\ ( # ` A ) =/= ( # ` B ) ) ) ) |
| 27 |
26
|
biimpar |
|- ( ( ( ( # ` B ) e. RR* /\ ( # ` A ) e. RR* ) /\ ( ( # ` B ) <_ ( # ` A ) /\ ( # ` A ) =/= ( # ` B ) ) ) -> ( # ` B ) < ( # ` A ) ) |
| 28 |
6 8 10 25 27
|
syl22anc |
|- ( ( A e. Fin /\ B C. A ) -> ( # ` B ) < ( # ` A ) ) |