Metamath Proof Explorer


Theorem hashpss

Description: The size of a proper subset is less than the size of its finite superset. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Assertion hashpss A Fin B A B < A

Proof

Step Hyp Ref Expression
1 simpl A Fin B A A Fin
2 simpr A Fin B A B A
3 2 pssssd A Fin B A B A
4 1 3 ssexd A Fin B A B V
5 hashxrcl B V B *
6 4 5 syl A Fin B A B *
7 hashxrcl A Fin A *
8 7 adantr A Fin B A A *
9 hashss A Fin B A B A
10 3 9 syldan A Fin B A B A
11 1 adantr A Fin B A A = B A Fin
12 3 adantr A Fin B A A = B B A
13 11 12 ssfid A Fin B A A = B B Fin
14 simpr A Fin B A A = B A = B
15 hashen A Fin B Fin A = B A B
16 15 biimpa A Fin B Fin A = B A B
17 11 13 14 16 syl21anc A Fin B A A = B A B
18 17 ensymd A Fin B A A = B B A
19 fisseneq A Fin B A B A B = A
20 11 12 18 19 syl3anc A Fin B A A = B B = A
21 2 adantr A Fin B A A = B B A
22 21 pssned A Fin B A A = B B A
23 22 neneqd A Fin B A A = B ¬ B = A
24 20 23 pm2.65da A Fin B A ¬ A = B
25 24 neqned A Fin B A A B
26 xrltlen B * A * B < A B A A B
27 26 biimpar B * A * B A A B B < A
28 6 8 10 25 27 syl22anc A Fin B A B < A