| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exsslsb.b |
|- B = ( Base ` W ) |
| 2 |
|
exsslsb.j |
|- J = ( LBasis ` W ) |
| 3 |
|
exsslsb.k |
|- K = ( LSpan ` W ) |
| 4 |
|
exsslsb.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
exsslsb.s |
|- ( ph -> S e. Fin ) |
| 6 |
|
exsslsb.1 |
|- ( ph -> S C_ B ) |
| 7 |
|
exsslsb.2 |
|- ( ph -> ( K ` S ) = B ) |
| 8 |
|
nfv |
|- F/ s ph |
| 9 |
4
|
ad2antrr |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> W e. LVec ) |
| 10 |
|
simplr |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) |
| 11 |
10
|
elin2d |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s e. ( ~P S i^i ( `' K " { B } ) ) ) |
| 12 |
11
|
elin1d |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s e. ~P S ) |
| 13 |
12
|
elpwid |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s C_ S ) |
| 14 |
6
|
ad2antrr |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> S C_ B ) |
| 15 |
13 14
|
sstrd |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s C_ B ) |
| 16 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 17 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 18 |
1 17 3
|
lspf |
|- ( W e. LMod -> K : ~P B --> ( LSubSp ` W ) ) |
| 19 |
4 16 18
|
3syl |
|- ( ph -> K : ~P B --> ( LSubSp ` W ) ) |
| 20 |
19
|
ffnd |
|- ( ph -> K Fn ~P B ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> K Fn ~P B ) |
| 22 |
11
|
elin2d |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s e. ( `' K " { B } ) ) |
| 23 |
|
fniniseg |
|- ( K Fn ~P B -> ( s e. ( `' K " { B } ) <-> ( s e. ~P B /\ ( K ` s ) = B ) ) ) |
| 24 |
23
|
simplbda |
|- ( ( K Fn ~P B /\ s e. ( `' K " { B } ) ) -> ( K ` s ) = B ) |
| 25 |
21 22 24
|
syl2anc |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> ( K ` s ) = B ) |
| 26 |
4 16
|
syl |
|- ( ph -> W e. LMod ) |
| 27 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> W e. LMod ) |
| 28 |
|
simpr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> u C. s ) |
| 29 |
28
|
pssssd |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> u C_ s ) |
| 30 |
13
|
adantr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> s C_ S ) |
| 31 |
29 30
|
sstrd |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> u C_ S ) |
| 32 |
14
|
adantr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> S C_ B ) |
| 33 |
31 32
|
sstrd |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> u C_ B ) |
| 34 |
1 3
|
lspssv |
|- ( ( W e. LMod /\ u C_ B ) -> ( K ` u ) C_ B ) |
| 35 |
27 33 34
|
syl2anc |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> ( K ` u ) C_ B ) |
| 36 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 37 |
|
ffun |
|- ( # : _V --> ( NN0 u. { +oo } ) -> Fun # ) |
| 38 |
36 37
|
mp1i |
|- ( ph -> Fun # ) |
| 39 |
|
pwssfi |
|- ( S e. Fin -> ( S e. Fin <-> ~P S C_ Fin ) ) |
| 40 |
39
|
ibi |
|- ( S e. Fin -> ~P S C_ Fin ) |
| 41 |
5 40
|
syl |
|- ( ph -> ~P S C_ Fin ) |
| 42 |
41
|
ssinss1d |
|- ( ph -> ( ~P S i^i ( `' K " { B } ) ) C_ Fin ) |
| 43 |
42
|
sselda |
|- ( ( ph /\ s e. ( ~P S i^i ( `' K " { B } ) ) ) -> s e. Fin ) |
| 44 |
|
hashcl |
|- ( s e. Fin -> ( # ` s ) e. NN0 ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ s e. ( ~P S i^i ( `' K " { B } ) ) ) -> ( # ` s ) e. NN0 ) |
| 46 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 47 |
45 46
|
eleqtrdi |
|- ( ( ph /\ s e. ( ~P S i^i ( `' K " { B } ) ) ) -> ( # ` s ) e. ( ZZ>= ` 0 ) ) |
| 48 |
8 38 47
|
funimassd |
|- ( ph -> ( # " ( ~P S i^i ( `' K " { B } ) ) ) C_ ( ZZ>= ` 0 ) ) |
| 49 |
48
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> ( # " ( ~P S i^i ( `' K " { B } ) ) ) C_ ( ZZ>= ` 0 ) ) |
| 50 |
36
|
a1i |
|- ( ph -> # : _V --> ( NN0 u. { +oo } ) ) |
| 51 |
50
|
ffnd |
|- ( ph -> # Fn _V ) |
| 52 |
51
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> # Fn _V ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> # Fn _V ) |
| 54 |
|
vex |
|- u e. _V |
| 55 |
54
|
a1i |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u e. _V ) |
| 56 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> S e. Fin ) |
| 57 |
56 31
|
sselpwd |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> u e. ~P S ) |
| 58 |
57
|
adantr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u e. ~P S ) |
| 59 |
21
|
ad2antrr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> K Fn ~P B ) |
| 60 |
1
|
fvexi |
|- B e. _V |
| 61 |
60
|
a1i |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> B e. _V ) |
| 62 |
61 33
|
sselpwd |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> u e. ~P B ) |
| 63 |
62
|
adantr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u e. ~P B ) |
| 64 |
|
simpr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( K ` u ) = B ) |
| 65 |
|
fvex |
|- ( K ` u ) e. _V |
| 66 |
65
|
elsn |
|- ( ( K ` u ) e. { B } <-> ( K ` u ) = B ) |
| 67 |
64 66
|
sylibr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( K ` u ) e. { B } ) |
| 68 |
59 63 67
|
elpreimad |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u e. ( `' K " { B } ) ) |
| 69 |
58 68
|
elind |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u e. ( ~P S i^i ( `' K " { B } ) ) ) |
| 70 |
53 55 69
|
fnfvimad |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` u ) e. ( # " ( ~P S i^i ( `' K " { B } ) ) ) ) |
| 71 |
|
infssuzle |
|- ( ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) C_ ( ZZ>= ` 0 ) /\ ( # ` u ) e. ( # " ( ~P S i^i ( `' K " { B } ) ) ) ) -> inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) <_ ( # ` u ) ) |
| 72 |
49 70 71
|
syl2an2r |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) <_ ( # ` u ) ) |
| 73 |
56 30
|
ssfid |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> s e. Fin ) |
| 74 |
73
|
adantr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> s e. Fin ) |
| 75 |
|
simplr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u C. s ) |
| 76 |
|
hashpss |
|- ( ( s e. Fin /\ u C. s ) -> ( # ` u ) < ( # ` s ) ) |
| 77 |
74 75 76
|
syl2anc |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` u ) < ( # ` s ) ) |
| 78 |
|
simpllr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) |
| 79 |
77 78
|
breqtrd |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` u ) < inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) |
| 80 |
29
|
adantr |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u C_ s ) |
| 81 |
74 80
|
ssfid |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> u e. Fin ) |
| 82 |
|
hashcl |
|- ( u e. Fin -> ( # ` u ) e. NN0 ) |
| 83 |
81 82
|
syl |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` u ) e. NN0 ) |
| 84 |
83
|
nn0red |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` u ) e. RR ) |
| 85 |
74 44
|
syl |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` s ) e. NN0 ) |
| 86 |
85
|
nn0red |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( # ` s ) e. RR ) |
| 87 |
78 86
|
eqeltrrd |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) e. RR ) |
| 88 |
84 87
|
ltnled |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> ( ( # ` u ) < inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) <-> -. inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) <_ ( # ` u ) ) ) |
| 89 |
79 88
|
mpbid |
|- ( ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) /\ ( K ` u ) = B ) -> -. inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) <_ ( # ` u ) ) |
| 90 |
72 89
|
pm2.65da |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> -. ( K ` u ) = B ) |
| 91 |
90
|
neqned |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> ( K ` u ) =/= B ) |
| 92 |
|
df-pss |
|- ( ( K ` u ) C. B <-> ( ( K ` u ) C_ B /\ ( K ` u ) =/= B ) ) |
| 93 |
35 91 92
|
sylanbrc |
|- ( ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) /\ u C. s ) -> ( K ` u ) C. B ) |
| 94 |
93
|
ex |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> ( u C. s -> ( K ` u ) C. B ) ) |
| 95 |
94
|
alrimiv |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> A. u ( u C. s -> ( K ` u ) C. B ) ) |
| 96 |
1 2 3
|
islbs3 |
|- ( W e. LVec -> ( s e. J <-> ( s C_ B /\ ( K ` s ) = B /\ A. u ( u C. s -> ( K ` u ) C. B ) ) ) ) |
| 97 |
96
|
biimpar |
|- ( ( W e. LVec /\ ( s C_ B /\ ( K ` s ) = B /\ A. u ( u C. s -> ( K ` u ) C. B ) ) ) -> s e. J ) |
| 98 |
9 15 25 95 97
|
syl13anc |
|- ( ( ( ph /\ s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ) /\ ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) -> s e. J ) |
| 99 |
5
|
elexd |
|- ( ph -> S e. _V ) |
| 100 |
|
pwidg |
|- ( S e. Fin -> S e. ~P S ) |
| 101 |
5 100
|
syl |
|- ( ph -> S e. ~P S ) |
| 102 |
5 6
|
elpwd |
|- ( ph -> S e. ~P B ) |
| 103 |
|
fvex |
|- ( K ` S ) e. _V |
| 104 |
103
|
elsn |
|- ( ( K ` S ) e. { B } <-> ( K ` S ) = B ) |
| 105 |
7 104
|
sylibr |
|- ( ph -> ( K ` S ) e. { B } ) |
| 106 |
20 102 105
|
elpreimad |
|- ( ph -> S e. ( `' K " { B } ) ) |
| 107 |
101 106
|
elind |
|- ( ph -> S e. ( ~P S i^i ( `' K " { B } ) ) ) |
| 108 |
51 99 107
|
fnfvimad |
|- ( ph -> ( # ` S ) e. ( # " ( ~P S i^i ( `' K " { B } ) ) ) ) |
| 109 |
108
|
ne0d |
|- ( ph -> ( # " ( ~P S i^i ( `' K " { B } ) ) ) =/= (/) ) |
| 110 |
|
infssuzcl |
|- ( ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) C_ ( ZZ>= ` 0 ) /\ ( # " ( ~P S i^i ( `' K " { B } ) ) ) =/= (/) ) -> inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) e. ( # " ( ~P S i^i ( `' K " { B } ) ) ) ) |
| 111 |
48 109 110
|
syl2anc |
|- ( ph -> inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) e. ( # " ( ~P S i^i ( `' K " { B } ) ) ) ) |
| 112 |
|
fvelima2 |
|- ( ( # Fn _V /\ inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) e. ( # " ( ~P S i^i ( `' K " { B } ) ) ) ) -> E. s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) |
| 113 |
51 111 112
|
syl2anc |
|- ( ph -> E. s e. ( _V i^i ( ~P S i^i ( `' K " { B } ) ) ) ( # ` s ) = inf ( ( # " ( ~P S i^i ( `' K " { B } ) ) ) , RR , < ) ) |
| 114 |
8 98 13 113
|
reximd2a |
|- ( ph -> E. s e. J s C_ S ) |