| Step | Hyp | Ref | Expression | 
						
							| 1 |  | max2 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ )  →  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | ifcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 )  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ )  →  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 )  ∈  ℝ ) | 
						
							| 8 |  | letr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 )  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) )  →  𝐴  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) )  →  𝐴  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 10 | 3 9 | mpan2d | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  →  𝐴  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 11 | 10 | 3impia | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐴  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  if ( 𝐶  ≤  𝐵 ,  𝐵 ,  𝐶 ) ) |