Metamath Proof Explorer


Theorem liminfreuz

Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfreuz.1 𝑗 𝐹
liminfreuz.2 ( 𝜑𝑀 ∈ ℤ )
liminfreuz.3 𝑍 = ( ℤ𝑀 )
liminfreuz.4 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
Assertion liminfreuz ( 𝜑 → ( ( lim inf ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) ) )

Proof

Step Hyp Ref Expression
1 liminfreuz.1 𝑗 𝐹
2 liminfreuz.2 ( 𝜑𝑀 ∈ ℤ )
3 liminfreuz.3 𝑍 = ( ℤ𝑀 )
4 liminfreuz.4 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
5 nfcv 𝑙 𝐹
6 5 2 3 4 liminfreuzlem ( 𝜑 → ( ( lim inf ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑙𝑍 𝑦 ≤ ( 𝐹𝑙 ) ) ) )
7 breq2 ( 𝑦 = 𝑥 → ( ( 𝐹𝑙 ) ≤ 𝑦 ↔ ( 𝐹𝑙 ) ≤ 𝑥 ) )
8 7 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
9 8 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
10 fveq2 ( 𝑖 = 𝑘 → ( ℤ𝑖 ) = ( ℤ𝑘 ) )
11 10 rexeqdv ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑙 ∈ ( ℤ𝑘 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
12 nfcv 𝑗 𝑙
13 1 12 nffv 𝑗 ( 𝐹𝑙 )
14 nfcv 𝑗
15 nfcv 𝑗 𝑥
16 13 14 15 nfbr 𝑗 ( 𝐹𝑙 ) ≤ 𝑥
17 nfv 𝑙 ( 𝐹𝑗 ) ≤ 𝑥
18 fveq2 ( 𝑙 = 𝑗 → ( 𝐹𝑙 ) = ( 𝐹𝑗 ) )
19 18 breq1d ( 𝑙 = 𝑗 → ( ( 𝐹𝑙 ) ≤ 𝑥 ↔ ( 𝐹𝑗 ) ≤ 𝑥 ) )
20 16 17 19 cbvrexw ( ∃ 𝑙 ∈ ( ℤ𝑘 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
21 20 a1i ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ ( ℤ𝑘 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
22 11 21 bitrd ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
23 22 cbvralvw ( ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
24 23 a1i ( 𝑦 = 𝑥 → ( ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
25 9 24 bitrd ( 𝑦 = 𝑥 → ( ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
26 25 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
27 breq1 ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹𝑙 ) ↔ 𝑥 ≤ ( 𝐹𝑙 ) ) )
28 27 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑙𝑍 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑙𝑍 𝑥 ≤ ( 𝐹𝑙 ) ) )
29 15 14 13 nfbr 𝑗 𝑥 ≤ ( 𝐹𝑙 )
30 nfv 𝑙 𝑥 ≤ ( 𝐹𝑗 )
31 18 breq2d ( 𝑙 = 𝑗 → ( 𝑥 ≤ ( 𝐹𝑙 ) ↔ 𝑥 ≤ ( 𝐹𝑗 ) ) )
32 29 30 31 cbvralw ( ∀ 𝑙𝑍 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) )
33 32 a1i ( 𝑦 = 𝑥 → ( ∀ 𝑙𝑍 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) )
34 28 33 bitrd ( 𝑦 = 𝑥 → ( ∀ 𝑙𝑍 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) )
35 34 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑙𝑍 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) )
36 26 35 anbi12i ( ( ∃ 𝑦 ∈ ℝ ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑙𝑍 𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) )
37 36 a1i ( 𝜑 → ( ( ∃ 𝑦 ∈ ℝ ∀ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑙𝑍 𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) ) )
38 6 37 bitrd ( 𝜑 → ( ( lim inf ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) ) )