Step |
Hyp |
Ref |
Expression |
1 |
|
limsuplesup.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
limsuplesup.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
3 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
4 |
3
|
limsupval |
⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
7 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
9 |
8
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
10 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
12 |
11
|
supxrcld |
⊢ ( 𝜑 → sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
13 |
|
oveq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 [,) +∞ ) = ( 𝐾 [,) +∞ ) ) |
14 |
13
|
imaeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
15 |
14
|
ineq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) ) |
16 |
15
|
supeq1d |
⊢ ( 𝑘 = 𝐾 → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
17 |
6 9 2 12 16
|
infxrlbrnmpt2 |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
18 |
5 17
|
eqbrtrd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |