Metamath Proof Explorer


Theorem limsuplesup

Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuplesup.1 ( 𝜑𝐹𝑉 )
limsuplesup.2 ( 𝜑𝐾 ∈ ℝ )
Assertion limsuplesup ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 limsuplesup.1 ( 𝜑𝐹𝑉 )
2 limsuplesup.2 ( 𝜑𝐾 ∈ ℝ )
3 eqid ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
4 3 limsupval ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
5 1 4 syl ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
6 nfv 𝑘 𝜑
7 inss2 ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
8 7 a1i ( ( 𝜑𝑘 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* )
9 8 supxrcld ( ( 𝜑𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
10 inss2 ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
11 10 a1i ( 𝜑 → ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* )
12 11 supxrcld ( 𝜑 → sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
13 oveq1 ( 𝑘 = 𝐾 → ( 𝑘 [,) +∞ ) = ( 𝐾 [,) +∞ ) )
14 13 imaeq2d ( 𝑘 = 𝐾 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝐾 [,) +∞ ) ) )
15 14 ineq1d ( 𝑘 = 𝐾 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) )
16 15 supeq1d ( 𝑘 = 𝐾 → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
17 6 9 2 12 16 infxrlbrnmpt2 ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
18 5 17 eqbrtrd ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ sup ( ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )