Metamath Proof Explorer


Theorem limsuplesup

Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuplesup.1 φ F V
limsuplesup.2 φ K
Assertion limsuplesup φ lim sup F sup F K +∞ * * <

Proof

Step Hyp Ref Expression
1 limsuplesup.1 φ F V
2 limsuplesup.2 φ K
3 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
4 3 limsupval F V lim sup F = sup ran k sup F k +∞ * * < * <
5 1 4 syl φ lim sup F = sup ran k sup F k +∞ * * < * <
6 nfv k φ
7 inss2 F k +∞ * *
8 7 a1i φ k F k +∞ * *
9 8 supxrcld φ k sup F k +∞ * * < *
10 inss2 F K +∞ * *
11 10 a1i φ F K +∞ * *
12 11 supxrcld φ sup F K +∞ * * < *
13 oveq1 k = K k +∞ = K +∞
14 13 imaeq2d k = K F k +∞ = F K +∞
15 14 ineq1d k = K F k +∞ * = F K +∞ *
16 15 supeq1d k = K sup F k +∞ * * < = sup F K +∞ * * <
17 6 9 2 12 16 infxrlbrnmpt2 φ sup ran k sup F k +∞ * * < * < sup F K +∞ * * <
18 5 17 eqbrtrd φ lim sup F sup F K +∞ * * <