| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsuplesup.1 |
|- ( ph -> F e. V ) |
| 2 |
|
limsuplesup.2 |
|- ( ph -> K e. RR ) |
| 3 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 4 |
3
|
limsupval |
|- ( F e. V -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 6 |
|
nfv |
|- F/ k ph |
| 7 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
| 8 |
7
|
a1i |
|- ( ( ph /\ k e. RR ) -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 9 |
8
|
supxrcld |
|- ( ( ph /\ k e. RR ) -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 10 |
|
inss2 |
|- ( ( F " ( K [,) +oo ) ) i^i RR* ) C_ RR* |
| 11 |
10
|
a1i |
|- ( ph -> ( ( F " ( K [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 12 |
11
|
supxrcld |
|- ( ph -> sup ( ( ( F " ( K [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 13 |
|
oveq1 |
|- ( k = K -> ( k [,) +oo ) = ( K [,) +oo ) ) |
| 14 |
13
|
imaeq2d |
|- ( k = K -> ( F " ( k [,) +oo ) ) = ( F " ( K [,) +oo ) ) ) |
| 15 |
14
|
ineq1d |
|- ( k = K -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( K [,) +oo ) ) i^i RR* ) ) |
| 16 |
15
|
supeq1d |
|- ( k = K -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( K [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 17 |
6 9 2 12 16
|
infxrlbrnmpt2 |
|- ( ph -> inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ sup ( ( ( F " ( K [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 18 |
5 17
|
eqbrtrd |
|- ( ph -> ( limsup ` F ) <_ sup ( ( ( F " ( K [,) +oo ) ) i^i RR* ) , RR* , < ) ) |