Metamath Proof Explorer


Theorem linepsubclN

Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses linepsubcl.n 𝑁 = ( Lines ‘ 𝐾 )
linepsubcl.c 𝐶 = ( PSubCl ‘ 𝐾 )
Assertion linepsubclN ( ( 𝐾 ∈ HL ∧ 𝑋𝑁 ) → 𝑋𝐶 )

Proof

Step Hyp Ref Expression
1 linepsubcl.n 𝑁 = ( Lines ‘ 𝐾 )
2 linepsubcl.c 𝐶 = ( PSubCl ‘ 𝐾 )
3 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
4 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
5 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
6 eqid ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 )
7 4 5 1 6 isline2 ( 𝐾 ∈ Lat → ( 𝑋𝑁 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝𝑞𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) )
8 3 7 syl ( 𝐾 ∈ HL → ( 𝑋𝑁 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝𝑞𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) )
9 3 adantr ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → 𝐾 ∈ Lat )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 5 atbase ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) )
12 11 ad2antrl ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) )
13 10 5 atbase ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ ( Base ‘ 𝐾 ) )
14 13 ad2antll ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) )
15 10 4 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ ( Base ‘ 𝐾 ) )
16 9 12 14 15 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ ( Base ‘ 𝐾 ) )
17 10 6 2 pmapsubclN ( ( 𝐾 ∈ HL ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐶 )
18 16 17 syldan ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐶 )
19 eleq1a ( ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐶 → ( 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑋𝐶 ) )
20 18 19 syl ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑋𝐶 ) )
21 20 adantld ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( 𝑝𝑞𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) → 𝑋𝐶 ) )
22 21 rexlimdvva ( 𝐾 ∈ HL → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝𝑞𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) → 𝑋𝐶 ) )
23 8 22 sylbid ( 𝐾 ∈ HL → ( 𝑋𝑁𝑋𝐶 ) )
24 23 imp ( ( 𝐾 ∈ HL ∧ 𝑋𝑁 ) → 𝑋𝐶 )