| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmmbr.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | lmmbr.3 | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 |  | lmmbr3.5 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | lmmbr3.6 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | lmmbrf.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 6 |  | lmmcvg.8 | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 7 |  | lmmcvg.9 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  𝑅  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) | 
						
							| 9 | 8 | 3anbi3d | ⊢ ( 𝑥  =  𝑅  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 10 | 9 | rexralbidv | ⊢ ( 𝑥  =  𝑅  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 11 | 1 2 3 4 | lmmbr3 | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) ) | 
						
							| 12 | 6 11 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) | 
						
							| 13 | 12 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) | 
						
							| 14 | 10 13 7 | rspcdva | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) | 
						
							| 15 | 3 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 16 |  | 3simpc | ⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) | 
						
							| 17 | 5 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ↔  𝐴  ∈  𝑋 ) ) | 
						
							| 18 | 5 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  =  ( 𝐴 𝐷 𝑃 ) ) | 
						
							| 19 | 18 | breq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅  ↔  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  ↔  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 21 | 16 20 | imbitrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 22 | 15 21 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 23 | 22 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 24 | 23 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 25 | 24 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) ) | 
						
							| 26 | 14 25 | mpd | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) |