Metamath Proof Explorer


Theorem lssbn

Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses lssbn.x 𝑋 = ( 𝑊s 𝑈 )
lssbn.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssbn.j 𝐽 = ( TopOpen ‘ 𝑊 )
Assertion lssbn ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 lssbn.x 𝑋 = ( 𝑊s 𝑈 )
2 lssbn.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lssbn.j 𝐽 = ( TopOpen ‘ 𝑊 )
4 bnnvc ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec )
5 1 2 lssnvc ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmVec )
6 4 5 sylan ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmVec )
7 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
8 1 7 resssca ( 𝑈𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
9 8 adantl ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
10 7 bnsca ( 𝑊 ∈ Ban → ( Scalar ‘ 𝑊 ) ∈ CMetSp )
11 10 adantr ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp )
12 9 11 eqeltrrd ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp )
13 eqid ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 )
14 13 isbn ( 𝑋 ∈ Ban ↔ ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) )
15 3anan32 ( ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ↔ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ∧ 𝑋 ∈ CMetSp ) )
16 14 15 bitri ( 𝑋 ∈ Ban ↔ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ∧ 𝑋 ∈ CMetSp ) )
17 16 baib ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) → ( 𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp ) )
18 6 12 17 syl2anc ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp ) )
19 bncms ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp )
20 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
21 20 2 lssss ( 𝑈𝑆𝑈 ⊆ ( Base ‘ 𝑊 ) )
22 1 20 3 cmsss ( ( 𝑊 ∈ CMetSp ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑋 ∈ CMetSp ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) )
23 19 21 22 syl2an ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( 𝑋 ∈ CMetSp ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) )
24 18 23 bitrd ( ( 𝑊 ∈ Ban ∧ 𝑈𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) )