| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssbn.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | lssbn.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lssbn.j |  |-  J = ( TopOpen ` W ) | 
						
							| 4 |  | bnnvc |  |-  ( W e. Ban -> W e. NrmVec ) | 
						
							| 5 | 1 2 | lssnvc |  |-  ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( W e. Ban /\ U e. S ) -> X e. NrmVec ) | 
						
							| 7 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 8 | 1 7 | resssca |  |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 10 | 7 | bnsca |  |-  ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) | 
						
							| 11 | 10 | adantr |  |-  ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) e. CMetSp ) | 
						
							| 12 | 9 11 | eqeltrrd |  |-  ( ( W e. Ban /\ U e. S ) -> ( Scalar ` X ) e. CMetSp ) | 
						
							| 13 |  | eqid |  |-  ( Scalar ` X ) = ( Scalar ` X ) | 
						
							| 14 | 13 | isbn |  |-  ( X e. Ban <-> ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) ) | 
						
							| 15 |  | 3anan32 |  |-  ( ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) ) | 
						
							| 16 | 14 15 | bitri |  |-  ( X e. Ban <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) ) | 
						
							| 17 | 16 | baib |  |-  ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) -> ( X e. Ban <-> X e. CMetSp ) ) | 
						
							| 18 | 6 12 17 | syl2anc |  |-  ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> X e. CMetSp ) ) | 
						
							| 19 |  | bncms |  |-  ( W e. Ban -> W e. CMetSp ) | 
						
							| 20 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 21 | 20 2 | lssss |  |-  ( U e. S -> U C_ ( Base ` W ) ) | 
						
							| 22 | 1 20 3 | cmsss |  |-  ( ( W e. CMetSp /\ U C_ ( Base ` W ) ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) ) | 
						
							| 23 | 19 21 22 | syl2an |  |-  ( ( W e. Ban /\ U e. S ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) ) | 
						
							| 24 | 18 23 | bitrd |  |-  ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> U e. ( Clsd ` J ) ) ) |