Metamath Proof Explorer


Theorem lssbn

Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses lssbn.x
|- X = ( W |`s U )
lssbn.s
|- S = ( LSubSp ` W )
lssbn.j
|- J = ( TopOpen ` W )
Assertion lssbn
|- ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> U e. ( Clsd ` J ) ) )

Proof

Step Hyp Ref Expression
1 lssbn.x
 |-  X = ( W |`s U )
2 lssbn.s
 |-  S = ( LSubSp ` W )
3 lssbn.j
 |-  J = ( TopOpen ` W )
4 bnnvc
 |-  ( W e. Ban -> W e. NrmVec )
5 1 2 lssnvc
 |-  ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec )
6 4 5 sylan
 |-  ( ( W e. Ban /\ U e. S ) -> X e. NrmVec )
7 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
8 1 7 resssca
 |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) )
9 8 adantl
 |-  ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) )
10 7 bnsca
 |-  ( W e. Ban -> ( Scalar ` W ) e. CMetSp )
11 10 adantr
 |-  ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) e. CMetSp )
12 9 11 eqeltrrd
 |-  ( ( W e. Ban /\ U e. S ) -> ( Scalar ` X ) e. CMetSp )
13 eqid
 |-  ( Scalar ` X ) = ( Scalar ` X )
14 13 isbn
 |-  ( X e. Ban <-> ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) )
15 3anan32
 |-  ( ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) )
16 14 15 bitri
 |-  ( X e. Ban <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) )
17 16 baib
 |-  ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) -> ( X e. Ban <-> X e. CMetSp ) )
18 6 12 17 syl2anc
 |-  ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> X e. CMetSp ) )
19 bncms
 |-  ( W e. Ban -> W e. CMetSp )
20 eqid
 |-  ( Base ` W ) = ( Base ` W )
21 20 2 lssss
 |-  ( U e. S -> U C_ ( Base ` W ) )
22 1 20 3 cmsss
 |-  ( ( W e. CMetSp /\ U C_ ( Base ` W ) ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) )
23 19 21 22 syl2an
 |-  ( ( W e. Ban /\ U e. S ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) )
24 18 23 bitrd
 |-  ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> U e. ( Clsd ` J ) ) )