| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsslsp.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
lsslsp.m |
⊢ 𝑀 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lsslsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑋 ) |
| 4 |
|
lsslsp.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 5 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑊 ∈ LMod ) |
| 6 |
1 4
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → 𝑋 ∈ LMod ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑋 ∈ LMod ) |
| 8 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ 𝑈 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 10 |
9 4
|
lssss |
⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 12 |
1 9
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 14 |
8 13
|
sseqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( Base ‘ 𝑋 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑋 ) = ( LSubSp ‘ 𝑋 ) |
| 17 |
15 16 3
|
lspcl |
⊢ ( ( 𝑋 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑋 ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 18 |
7 14 17
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 19 |
1 4 16
|
lsslss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑁 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 20 |
19
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑁 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 21 |
18 20
|
mpbid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑁 ‘ 𝐺 ) ⊆ 𝑈 ) ) |
| 22 |
21
|
simpld |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ) |
| 23 |
15 3
|
lspssid |
⊢ ( ( 𝑋 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑋 ) ) → 𝐺 ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 24 |
7 14 23
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 25 |
4 2
|
lspssp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ 𝐺 ⊆ ( 𝑁 ‘ 𝐺 ) ) → ( 𝑀 ‘ 𝐺 ) ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 26 |
5 22 24 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 27 |
8 11
|
sstrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( Base ‘ 𝑊 ) ) |
| 28 |
9 4 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ) |
| 29 |
5 27 28
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ) |
| 30 |
4 2
|
lspssp |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ⊆ 𝑈 ) |
| 31 |
1 4 16
|
lsslss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑀 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 32 |
31
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑀 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 33 |
29 30 32
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 34 |
9 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑊 ) ) → 𝐺 ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 35 |
5 27 34
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 36 |
16 3
|
lspssp |
⊢ ( ( 𝑋 ∈ LMod ∧ ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ∧ 𝐺 ⊆ ( 𝑀 ‘ 𝐺 ) ) → ( 𝑁 ‘ 𝐺 ) ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 37 |
7 33 35 36
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝐺 ) ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 38 |
26 37
|
eqssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) = ( 𝑁 ‘ 𝐺 ) ) |