| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsw | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ∉  𝑉  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 3 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝑉  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 ) | 
						
							| 6 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 ) ) | 
						
							| 7 | 6 | biimpri | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 8 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℕ0 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℕ0 ) | 
						
							| 10 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 11 | 10 | ltm1d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  −  1 )  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 13 |  | elfzo0 | ⊢ ( ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 14 | 9 7 12 13 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 15 | 14 | adantll | ⊢ ( ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 16 | 5 15 | ffvelcdmd | ⊢ ( ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉 ) ) | 
						
							| 18 | 3 4 17 | syl2anc | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉 ) ) | 
						
							| 19 |  | eleq1a | ⊢ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉  →  ( ∅  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ∅  ∈  𝑉 ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( ∅  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉  →  ∅  ∈  𝑉 ) ) | 
						
							| 21 | 20 | eqcoms | ⊢ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ∅  →  ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉  →  ∅  ∈  𝑉 ) ) | 
						
							| 22 | 21 | com12 | ⊢ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉  →  ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ∅  →  ∅  ∈  𝑉 ) ) | 
						
							| 23 |  | nnel | ⊢ ( ¬  ∅  ∉  𝑉  ↔  ∅  ∈  𝑉 ) | 
						
							| 24 | 22 23 | imbitrrdi | ⊢ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉  →  ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ∅  →  ¬  ∅  ∉  𝑉 ) ) | 
						
							| 25 | 24 | necon2ad | ⊢ ( ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  𝑉  →  ( ∅  ∉  𝑉  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ≠  ∅ ) ) | 
						
							| 26 | 18 25 | syl6 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( ∅  ∉  𝑉  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ≠  ∅ ) ) ) | 
						
							| 27 | 26 | com23 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ∅  ∉  𝑉  →  ( ( ♯ ‘ 𝑊 )  ≠  0  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ≠  ∅ ) ) ) | 
						
							| 28 | 27 | 3imp | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ∉  𝑉  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ≠  ∅ ) | 
						
							| 29 | 2 28 | eqnetrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∅  ∉  𝑉  ∧  ( ♯ ‘ 𝑊 )  ≠  0 )  →  ( lastS ‘ 𝑊 )  ≠  ∅ ) |