| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsw |  |-  ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( W e. Word V /\ (/) e/ V /\ ( # ` W ) =/= 0 ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 3 |  | wrdf |  |-  ( W e. Word V -> W : ( 0 ..^ ( # ` W ) ) --> V ) | 
						
							| 4 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 5 |  | simpll |  |-  ( ( ( W : ( 0 ..^ ( # ` W ) ) --> V /\ ( # ` W ) e. NN0 ) /\ ( # ` W ) =/= 0 ) -> W : ( 0 ..^ ( # ` W ) ) --> V ) | 
						
							| 6 |  | elnnne0 |  |-  ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) | 
						
							| 7 | 6 | biimpri |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( # ` W ) e. NN ) | 
						
							| 8 |  | nnm1nn0 |  |-  ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. NN0 ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( ( # ` W ) - 1 ) e. NN0 ) | 
						
							| 10 |  | nn0re |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. RR ) | 
						
							| 11 | 10 | ltm1d |  |-  ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) < ( # ` W ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( ( # ` W ) - 1 ) < ( # ` W ) ) | 
						
							| 13 |  | elfzo0 |  |-  ( ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( ( # ` W ) - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) | 
						
							| 14 | 9 7 12 13 | syl3anbrc |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 15 | 14 | adantll |  |-  ( ( ( W : ( 0 ..^ ( # ` W ) ) --> V /\ ( # ` W ) e. NN0 ) /\ ( # ` W ) =/= 0 ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 16 | 5 15 | ffvelcdmd |  |-  ( ( ( W : ( 0 ..^ ( # ` W ) ) --> V /\ ( # ` W ) e. NN0 ) /\ ( # ` W ) =/= 0 ) -> ( W ` ( ( # ` W ) - 1 ) ) e. V ) | 
						
							| 17 | 16 | ex |  |-  ( ( W : ( 0 ..^ ( # ` W ) ) --> V /\ ( # ` W ) e. NN0 ) -> ( ( # ` W ) =/= 0 -> ( W ` ( ( # ` W ) - 1 ) ) e. V ) ) | 
						
							| 18 | 3 4 17 | syl2anc |  |-  ( W e. Word V -> ( ( # ` W ) =/= 0 -> ( W ` ( ( # ` W ) - 1 ) ) e. V ) ) | 
						
							| 19 |  | eleq1a |  |-  ( ( W ` ( ( # ` W ) - 1 ) ) e. V -> ( (/) = ( W ` ( ( # ` W ) - 1 ) ) -> (/) e. V ) ) | 
						
							| 20 | 19 | com12 |  |-  ( (/) = ( W ` ( ( # ` W ) - 1 ) ) -> ( ( W ` ( ( # ` W ) - 1 ) ) e. V -> (/) e. V ) ) | 
						
							| 21 | 20 | eqcoms |  |-  ( ( W ` ( ( # ` W ) - 1 ) ) = (/) -> ( ( W ` ( ( # ` W ) - 1 ) ) e. V -> (/) e. V ) ) | 
						
							| 22 | 21 | com12 |  |-  ( ( W ` ( ( # ` W ) - 1 ) ) e. V -> ( ( W ` ( ( # ` W ) - 1 ) ) = (/) -> (/) e. V ) ) | 
						
							| 23 |  | nnel |  |-  ( -. (/) e/ V <-> (/) e. V ) | 
						
							| 24 | 22 23 | imbitrrdi |  |-  ( ( W ` ( ( # ` W ) - 1 ) ) e. V -> ( ( W ` ( ( # ` W ) - 1 ) ) = (/) -> -. (/) e/ V ) ) | 
						
							| 25 | 24 | necon2ad |  |-  ( ( W ` ( ( # ` W ) - 1 ) ) e. V -> ( (/) e/ V -> ( W ` ( ( # ` W ) - 1 ) ) =/= (/) ) ) | 
						
							| 26 | 18 25 | syl6 |  |-  ( W e. Word V -> ( ( # ` W ) =/= 0 -> ( (/) e/ V -> ( W ` ( ( # ` W ) - 1 ) ) =/= (/) ) ) ) | 
						
							| 27 | 26 | com23 |  |-  ( W e. Word V -> ( (/) e/ V -> ( ( # ` W ) =/= 0 -> ( W ` ( ( # ` W ) - 1 ) ) =/= (/) ) ) ) | 
						
							| 28 | 27 | 3imp |  |-  ( ( W e. Word V /\ (/) e/ V /\ ( # ` W ) =/= 0 ) -> ( W ` ( ( # ` W ) - 1 ) ) =/= (/) ) | 
						
							| 29 | 2 28 | eqnetrd |  |-  ( ( W e. Word V /\ (/) e/ V /\ ( # ` W ) =/= 0 ) -> ( lastS ` W ) =/= (/) ) |