| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsw |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
|
wrdf |
|
| 4 |
|
lencl |
|
| 5 |
|
simpll |
|
| 6 |
|
elnnne0 |
|
| 7 |
6
|
biimpri |
|
| 8 |
|
nnm1nn0 |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
nn0re |
|
| 11 |
10
|
ltm1d |
|
| 12 |
11
|
adantr |
|
| 13 |
|
elfzo0 |
|
| 14 |
9 7 12 13
|
syl3anbrc |
|
| 15 |
14
|
adantll |
|
| 16 |
5 15
|
ffvelcdmd |
|
| 17 |
16
|
ex |
|
| 18 |
3 4 17
|
syl2anc |
|
| 19 |
|
eleq1a |
|
| 20 |
19
|
com12 |
|
| 21 |
20
|
eqcoms |
|
| 22 |
21
|
com12 |
|
| 23 |
|
nnel |
|
| 24 |
22 23
|
imbitrrdi |
|
| 25 |
24
|
necon2ad |
|
| 26 |
18 25
|
syl6 |
|
| 27 |
26
|
com23 |
|
| 28 |
27
|
3imp |
|
| 29 |
2 28
|
eqnetrd |
|