| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsw |  | 
						
							| 2 | 1 | 3ad2ant1 |  | 
						
							| 3 |  | wrdf |  | 
						
							| 4 |  | lencl |  | 
						
							| 5 |  | simpll |  | 
						
							| 6 |  | elnnne0 |  | 
						
							| 7 | 6 | biimpri |  | 
						
							| 8 |  | nnm1nn0 |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | nn0re |  | 
						
							| 11 | 10 | ltm1d |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | elfzo0 |  | 
						
							| 14 | 9 7 12 13 | syl3anbrc |  | 
						
							| 15 | 14 | adantll |  | 
						
							| 16 | 5 15 | ffvelcdmd |  | 
						
							| 17 | 16 | ex |  | 
						
							| 18 | 3 4 17 | syl2anc |  | 
						
							| 19 |  | eleq1a |  | 
						
							| 20 | 19 | com12 |  | 
						
							| 21 | 20 | eqcoms |  | 
						
							| 22 | 21 | com12 |  | 
						
							| 23 |  | nnel |  | 
						
							| 24 | 22 23 | imbitrrdi |  | 
						
							| 25 | 24 | necon2ad |  | 
						
							| 26 | 18 25 | syl6 |  | 
						
							| 27 | 26 | com23 |  | 
						
							| 28 | 27 | 3imp |  | 
						
							| 29 | 2 28 | eqnetrd |  |