| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 2 |
|
rereccl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 3 |
1 2
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 4 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| 5 |
3 4
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 < ( 1 / 𝐴 ) ) ) |
| 6 |
|
ltrec |
⊢ ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 < ( 1 / 𝐴 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / ( 1 / 𝐴 ) ) ) ) |
| 7 |
5 6
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / ( 1 / 𝐴 ) ) ) ) |
| 8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 9 |
|
recrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 10 |
8 9
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 11 |
1 10
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 13 |
12
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐵 ) < ( 1 / ( 1 / 𝐴 ) ) ↔ ( 1 / 𝐵 ) < 𝐴 ) ) |
| 14 |
7 13
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < 𝐴 ) ) |