Metamath Proof Explorer


Theorem mapdh7eN

Description: Part (7) of Baer p. 48 line 10 (5 of 6 cases). (Note: 1 of 6 and 2 of 6 are hypotheses a and b.) (Contributed by NM, 2-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh7.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.v 𝑉 = ( Base ‘ 𝑈 )
mapdh7.s = ( -g𝑈 )
mapdh7.o 0 = ( 0g𝑈 )
mapdh7.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh7.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.d 𝐷 = ( Base ‘ 𝐶 )
mapdh7.r 𝑅 = ( -g𝐶 )
mapdh7.q 𝑄 = ( 0g𝐶 )
mapdh7.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh7.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh7.f ( 𝜑𝐹𝐷 )
mapdh7.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh7.x ( 𝜑𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.y ( 𝜑𝑣 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.z ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.ne ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
mapdh7.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) )
mapdh7b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) = 𝐸 )
Assertion mapdh7eN ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑢 ⟩ ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 mapdh7.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh7.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh7.s = ( -g𝑈 )
5 mapdh7.o 0 = ( 0g𝑈 )
6 mapdh7.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh7.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh7.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh7.r 𝑅 = ( -g𝐶 )
10 mapdh7.q 𝑄 = ( 0g𝐶 )
11 mapdh7.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh7.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh7.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh7.f ( 𝜑𝐹𝐷 )
16 mapdh7.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh7.x ( 𝜑𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh7.y ( 𝜑𝑣 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh7.z ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh7.ne ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
21 mapdh7.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) )
22 mapdh7b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) = 𝐸 )
23 19 eldifad ( 𝜑𝑤𝑉 )
24 1 2 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
25 17 eldifad ( 𝜑𝑢𝑉 )
26 18 eldifad ( 𝜑𝑣𝑉 )
27 3 6 24 23 25 26 21 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑢 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) )
28 27 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑢 } ) )
29 28 necomd ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
30 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 23 29 mapdhcl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) ∈ 𝐷 )
31 22 30 eqeltrrd ( 𝜑𝐸𝐷 )
32 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 19 31 29 mapdheq2 ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) = 𝐸 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑢 ⟩ ) = 𝐹 ) )
33 22 32 mpd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑢 ⟩ ) = 𝐹 )