| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1dim.a | ⊢ 𝐴  =  ( { 𝐸 }  Mat  𝑅 ) | 
						
							| 2 |  | mat1dim.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mat1dim.o | ⊢ 𝑂  =  〈 𝐸 ,  𝐸 〉 | 
						
							| 4 |  | snfi | ⊢ { 𝐸 }  ∈  Fin | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐸  ∈  𝑉  →  { 𝐸 }  ∈  Fin ) | 
						
							| 6 | 5 | anim2i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑅  ∈  Ring  ∧  { 𝐸 }  ∈  Fin ) ) | 
						
							| 7 | 6 | ancomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 | 1 8 | mat0op | ⊢ ( ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 0g ‘ 𝐴 )  =  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐸  ∈  𝑉 ) | 
						
							| 12 |  | fvexd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) )  =  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑥  =  𝐸  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝑦  =  𝐸  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 16 | 13 14 15 | mposn | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉  ∧  ( 0g ‘ 𝑅 )  ∈  V )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) )  =  { 〈 〈 𝐸 ,  𝐸 〉 ,  ( 0g ‘ 𝑅 ) 〉 } ) | 
						
							| 17 | 3 | eqcomi | ⊢ 〈 𝐸 ,  𝐸 〉  =  𝑂 | 
						
							| 18 | 17 | opeq1i | ⊢ 〈 〈 𝐸 ,  𝐸 〉 ,  ( 0g ‘ 𝑅 ) 〉  =  〈 𝑂 ,  ( 0g ‘ 𝑅 ) 〉 | 
						
							| 19 | 18 | sneqi | ⊢ { 〈 〈 𝐸 ,  𝐸 〉 ,  ( 0g ‘ 𝑅 ) 〉 }  =  { 〈 𝑂 ,  ( 0g ‘ 𝑅 ) 〉 } | 
						
							| 20 | 16 19 | eqtrdi | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉  ∧  ( 0g ‘ 𝑅 )  ∈  V )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) )  =  { 〈 𝑂 ,  ( 0g ‘ 𝑅 ) 〉 } ) | 
						
							| 21 | 11 11 12 20 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑥  ∈  { 𝐸 } ,  𝑦  ∈  { 𝐸 }  ↦  ( 0g ‘ 𝑅 ) )  =  { 〈 𝑂 ,  ( 0g ‘ 𝑅 ) 〉 } ) | 
						
							| 22 | 10 21 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 0g ‘ 𝐴 )  =  { 〈 𝑂 ,  ( 0g ‘ 𝑅 ) 〉 } ) |